Skip to main content
Log in

Lysozyme regulates the extracellular polymer of activated sludge and promotes the formation of electroactive biofilm

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The formation of electroactive biofilm from activated sludge on electrode surface is a key step to construct a bio-electrochemical system, yet it is greatly limited by the poor affinity between the bacteria and the electrode interface. Herein, we report a new method to promote the formation of electroactive biofilm by regulating the extracellular polymeric substance (EPS) content in activated sludge with lysozyme. The investigation of the effect of lysozyme treatment on the content of extracellular polymers and the biofilm formation of electroactive bacteria suggests that lysozyme can improve the permeability of the positive bacterial cell membrane and thus increase the EPS content in the activated sludge. The characterizations of electrochemical activity, surface morphology and community structure of the anode biofilm indicate that increasing EPS content promotes the adhesion of the mixed bacteria in the activated sludge on the electrode and results in denser biofilms with better conductivities. The microbial fuel cell (MFC) inoculated with the sludge of high EPS content exhibits the power density up to 2.195 W/m2, much higher than that inoculated with the untreated sludge (1.545 W/m2). The strategy of adjusting EPS content in activated sludge with a biological enzyme can effectively enhance the ability of the bacterial community to form biofilms and exhibits great application potentials in the construction of high efficiency bio-electrochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ji J, Gao T, Salama ES, El-Dalatony MM, Peng L, Gong Y, Liu P, Li X (2021) Using aspergillus niger whole-cell biocatalyst mycelial aerobic granular sludge to treat pharmaceutical wastewater containing β-lactam antibiotics. Chem Eng J 412:128665. https://doi.org/10.1016/j.cej.2021.128665

    Article  CAS  Google Scholar 

  2. Izadi P, Izadi P, Eldyasti A (2021) Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: a review. Chemosphere 274:129703. https://doi.org/10.1016/j.chemosphere.2021.129703

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Zhang P, Qiu Y, Zhang Z, Wang X, Yu Y, Feng Y (2021) Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Sci Total Env 762:143142. https://doi.org/10.1016/j.scitotenv.2020.143142

    Article  CAS  Google Scholar 

  4. Modestra JA, Reddy C, Krishna K, Min B, Mohan SV (2020) Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell. Renew Energy 149:424–434. https://doi.org/10.1016/j.renene.2019.12.018

    Article  CAS  Google Scholar 

  5. Taskan B, Taskan E (2021) Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere 285:131538. https://doi.org/10.1016/j.chemosphere.2021.131538

    Article  CAS  PubMed  Google Scholar 

  6. Cecconet D, Sabba F, Devecseri M, Callegari A, Capodaglio AG (2020) In situ groundwater remediation with bioelectrochemical systems: a critical review and future perspectives. Env Int 137:105550. https://doi.org/10.1016/j.envint.2020.105550

    Article  CAS  Google Scholar 

  7. Logan BE, Rossi R, Ragab A, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microb 17(5):307–319. https://doi.org/10.1038/s41579-019-0173-x

    Article  CAS  Google Scholar 

  8. Greenman J, Gajda I, You J, Mendis BA, Obata O, Pasternak G, Ieropoulos I (2021) Microbial fuel cells and their electrified biofilms. Biofilm 3:100057. https://doi.org/10.1016/j.bioflm.2021.100057

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhuang Z, Yang G, Zhuang L (2022) Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm. Sci Total Env 806:150713. https://doi.org/10.1016/j.scitotenv.2021.150713

    Article  CAS  Google Scholar 

  10. Wu D, Sun F, Chua F, Zhou Y (2020) Enhanced power generation in microbial fuel cell by an agonist of electroactive biofilm–sulfamethoxazole. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123238

    Article  PubMed  PubMed Central  Google Scholar 

  11. Melo A, Costa J, Quintelas C, Ferreira EC, Mesquita DP (2021) Effect of ibuprofen on extracellular polymeric substances (EPS) production and composition, and assessment of microbial structure by quantitative image analysis. J Env Manage 293:112852. https://doi.org/10.1016/j.jenvman.2021.112852

    Article  CAS  Google Scholar 

  12. Chen S, Fang Y, Jing X, Luo H, Chen J, Zhou S (2018) Enhanced electrosynthesis performance of Moorella thermoautotrophica by improving cell permeability. Bioelectrochemistry 121:151–159. https://doi.org/10.1016/j.bioelechem.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Zhang P, Zhou X, Qi R, Gai P, Liu L, Lv F, Wang S (2019) Conductive polymer–exoelectrogen hybrid bioelectrode with improved biofilm formation and extracellular electron transport. Adv—Electronic Mater 5(8):1900320. https://doi.org/10.1002/aelm.201900320

    Article  CAS  Google Scholar 

  14. Gomaa OM, Selim N, Fathy R, Maghrawy HH, Gamal M, Kareem HA, Kyazze G, Keshavarz T (2021) Characterization of a biosurfactant producing electroactive Bacillus sp. for enhanced microbial fuel cell dye decolourisation. Enzyme Microb Technol 147:109767. https://doi.org/10.1016/j.enzmictec.2021.109767

    Article  CAS  PubMed  Google Scholar 

  15. Zhou X, Zhai S, Zhao Y, Liu D, Wang Q, Ji M (2021) Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: characterization of chromium distributions, EPS compositions and denitrifying communities. Hazard Mater 411:125087. https://doi.org/10.1016/j.jhazmat.2021.125087

    Article  CAS  Google Scholar 

  16. Wang S, Zhi L, Shan W, Lu H, Xu Q, Li J (2020) Correlation of extracellular polymeric substances and microbial community structure in denitrification biofilm exposed to adverse conditions. Microb Biotechnol 13(6):1889–1903. https://doi.org/10.1111/1751-7915.13633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ray G, Noori M, Ghangrekar M (2017) Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells. RSC Adv 7:10707–10717. https://doi.org/10.1039/C6RA27763B

    Article  CAS  Google Scholar 

  18. Lin ZQ, Shao W, Xu J, Sheng GP (2019) Accurately quantifying the reductive capacity of microbial extracellular polymeric substance by mediated electrochemical oxidation method. Sci Total Env 673:541–545. https://doi.org/10.1016/j.scitotenv.2019.04.130

    Article  CAS  Google Scholar 

  19. Shen WR, Zhao X, Wang X, Yang S, Jia X, Yu X, Yang J, Yang Q, Zhao H (2020) Improving the power generation performances of gram-positive electricigens by regulating the peptidoglycan layer with lysozyme. Env Res 185:109463. https://doi.org/10.1016/j.envres.2020.109463

    Article  CAS  Google Scholar 

  20. Yang QZ, Zhou B, Liu JW, Shen WR, Jia XD, He XJ, Zhao HZ (2020) Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chem Eng Sci. https://doi.org/10.1016/j.ces.2021.116750

    Article  Google Scholar 

  21. Zhang L, Zhu X, Li J, Liao Q, Liao Q, Ye D (2011) Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J Power Sources 196(15):6029–6035. https://doi.org/10.1016/j.jpowsour.2011.04.013

    Article  CAS  Google Scholar 

  22. Zhang Q, Zhang W, He Q, Li M, Li Y, Huang W (2020) Effects of dissolved oxygen concentrations on a bioaugmented sequencing batch rector treating aniline-laden wastewater: reactor performance, microbial dynamics and functional genes. Bioresour Technol 313:123598. https://doi.org/10.1016/j.biortech.2020.123598

    Article  CAS  PubMed  Google Scholar 

  23. Lian Z, Yang Z, Song W, Sun M, Gan Y, Bai X (2022) Effects of different exogenous cadmium compounds on the chemical composition and adsorption properties of two gram-negative bacterial EPS. Sci Total Env 806:150511. https://doi.org/10.1016/j.scitotenv.2021.150511

    Article  CAS  Google Scholar 

  24. Wang D, Pan J, Met Xu, Liu B, Hu J, Hu S, Hou H (2021) Surface modification of shewanella oneidensis MR-1 with polypyrrole-dopamine coating for improvement of power generation in microbial fuel cells. J Power Sources. https://doi.org/10.1016/j.jpowsour.2020.229220

    Article  Google Scholar 

  25. Lin F, Zhu X, Li J, Yu P, Luo Y, Liu M (2019) Effect of extracellular polymeric substances (EPS) conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge. Chemosphere 235:679–689. https://doi.org/10.1016/j.chemosphere.2019.06.220

    Article  CAS  PubMed  Google Scholar 

  26. Lin F, Li J, Liu M, Yu P, Zhang Z, Zhu X (2020) New insights into the effect of extracellular polymeric substance on the sludge dewaterability based on interaction energy and viscoelastic acoustic response analysis. Chemosphere 261:127929. https://doi.org/10.1016/j.chemosphere.2020.127929

    Article  CAS  PubMed  Google Scholar 

  27. He JG, Xin XD, Qiu W, Zhang J, Wen ZD, Tang J (2014) Performance of the lysozyme for promoting the waste activated sludge biodegradability. Bioresour Technol 170:108–114. https://doi.org/10.1016/j.biortech.2014.07.095

    Article  CAS  PubMed  Google Scholar 

  28. Jia F, Yang Q, Liu X, Li X, Li B, Zhang L, Peng Y (2017) Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms. Env Sci Technol 51:3260–3268. https://doi.org/10.1021/acs.est.6b05761

    Article  CAS  Google Scholar 

  29. Stockl M, Teubner NC, Holtmann D, Mangold KM, Sand W (2019) Extracellular polymeric substances from geobacter sulfurreducens biofilms in microbial fuel cells. ACS Appl Mater Interfaces 11:8961–8968. https://doi.org/10.1021/acsami.8b14340

    Article  CAS  PubMed  Google Scholar 

  30. Yang G, Lin J, Zeng EY, Zhuang L (2019) Extraction and characterization of stratified extracellular polymeric substances in geobacter biofilms. Bioresour Technol 276:119–126. https://doi.org/10.1016/j.biortech.2018.12.100

    Article  CAS  PubMed  Google Scholar 

  31. Xiao Y, Zhao F (2017) Electrochemical roles of extracellular polymeric substances in biofilms. Curr Opin Electrochem 4:206–211. https://doi.org/10.1016/j.coelec.2017.09.016

    Article  CAS  Google Scholar 

  32. Liu Y, Climent V, Berná A, Feliu JM (2011) Effect of temperature on the catalytic ability of electrochemically active biofilm as anode catalyst in microbial fuel cells. Electroanalysis 23:387–394. https://doi.org/10.1002/elan.201000499

    Article  CAS  Google Scholar 

  33. Molognoni D, Puig S, Balaguer MD, Capodaglio AG, Callegari A, Colprim J (2016) Multiparametric control for enhanced biofilm selection in microbial fuel cells. J Chem Technol Biotechnol 91(6):1720–1727. https://doi.org/10.1002/jctb.4760

    Article  CAS  Google Scholar 

  34. Modestra JA, Mohan SV (2014) Bio-electrocatalyzed electron efflux in gram positive and gram negative bacteria: an insight into disparity in electron transfer kinetics. RSC Adv 4(64):34045–34055. https://doi.org/10.1039/c4ra03489a

    Article  CAS  Google Scholar 

  35. Sathishkumar K, Li Y, Sanganyado E (2020) Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125077

    Article  Google Scholar 

  36. Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microb Lett 223:287–292. https://doi.org/10.1016/S0378-1097(03)00399-9

    Article  CAS  Google Scholar 

  37. Li Y, Xin M, Xie D, Fan S, Ma J, Liu K, Yu F (2021) Variation in extracellular polymeric substances from Enterobacter sp. and their Pb(2+) adsorption behaviors. ACS Omega 6:9617–9628. https://doi.org/10.1021/acsomega.1c00185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arabski M, Konieczna I, Tusinska E, Wasik S, Relich I, Zajac K, Zbigniew Z, Kaca W (2015) The use of lysozyme modified with fluorescein for the detection of gram-positive bacteria. Microb Res 170:242–247. https://doi.org/10.1016/j.micres.2014.05.004

    Article  CAS  Google Scholar 

  39. Luo J, Li M, Zhou M, Hu Y (2015) Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosens Bioelectron 69:113–120. https://doi.org/10.1016/j.bios.2015.02.025

    Article  CAS  PubMed  Google Scholar 

  40. Gustave W, Yuan ZF, Sekar R, Toppin V, Liu JY, Ren YX, Zhang J, Chen Z (2019) Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells. Res Microb 170(2):97–104. https://doi.org/10.1016/j.resmic.2018.11.002

    Article  CAS  Google Scholar 

  41. Alatraktchi FAa, Zhang Y, Angelidaki I (2014) Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222. https://doi.org/10.1016/j.apenergy.2013.11.058

    Article  CAS  Google Scholar 

  42. Chen G-W, Choi S-J, Cha J-H, Lee TH, Kim CW (2010) Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. Korean J Chem Eng 27:1513–1520. https://doi.org/10.1007/s11814-010-0231-6

    Article  CAS  Google Scholar 

  43. Jiang Q, Xing D, Sun R, Zhang L, Feng Y, Ren N (2016) Anode biofilm communities and the performance of microbial fuel cells with different reactor configurations. RSC Adv 6:85149–85155. https://doi.org/10.1039/C6RA08790F

    Article  CAS  Google Scholar 

  44. Kim GT, Webster G, Wimpenny JW, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microb 101:698–710. https://doi.org/10.1111/j.1365-2672.2006.02923.x

    Article  CAS  Google Scholar 

  45. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to clostridium butyricum Isolated from a microbial fuel cell. Anaerobe 7:297–306. https://doi.org/10.1006/anae.2001.0399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Innovation and Entrepreneurship Training Program for Local College Student (No. S202010431030 and No. S202010431046), Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry (No. 202017).

Author information

Authors and Affiliations

Authors

Contributions

XJ Conceptualization, Methodology, Writing-Original draft preparation. XL Visualization, Writing-Original draft preparation. KZ: Software, Data curation, Writing-Original draft preparation. XZ and ZY Investigation, Validation. XY and YH Supervision, Methodology. QY Methodology, Writing-Reviewing and Editing.

Corresponding authors

Correspondence to Xue Yang or Qinzheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent for participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Liu, X., Zhu, K. et al. Lysozyme regulates the extracellular polymer of activated sludge and promotes the formation of electroactive biofilm. Bioprocess Biosyst Eng 45, 1065–1074 (2022). https://doi.org/10.1007/s00449-022-02727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02727-7

Keywords

Navigation