Skip to main content
Log in

A comprehensive comparison of mixing and mass transfer in shake flasks and their relationship with MAb productivity of CHO cells

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The selection of highly recombinant protein (RP)-productive Chinese hamster ovary (CHO) cell lines is widely carried out in shake flasks. It is assumed that increases in the operating parameters in shake flasks lead to impairments in cell growth and RP production. These effects in cells metabolism are widely associated with high mass transfers and hydrodynamic stress. This study examined the impact of commonly used operational parameters on growth and specific productivity (qP) of two CHO cell lines differentially secreting a humanized anti-hIL8 monoclonal antibody (mAb) and cultured in 250 ml flasks. The evaluated parameters are filling volume (10, 15, and 20%), shaking frequency (60 and 120 revolutions per minute -rpm-), and orbital diameter (25.4 and 19 mm). The analysis of the oxygen transfer was done in terms of the measured volumetric mass transfer coefficient (kLa) and of the hydrodynamics in terms of power input per unit volume of liquid (P/V), the turbulent eddy length scale measured by the Kolmogorov’s microscale of turbulence, the energy dissipation rate, the average shear stress, and the shear rate. Though almost all measured kinetic and stoichiometric parameters remained unchanged, mAb titer included, significant differences were found in maximum cell concentration, 10–45% higher in conditions with lower values of kLa and P/V. Changes in glucose metabolism contributing to qP were only shown in the higher producer cell line. Non-lethal responses to elevated oxygen transfer and shear stress might be present and must be considered when evaluating CHO cell cultures in shake flasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

C L*:

Oxygen concentration at the interfacial saturation

C L :

Oxygen concentration in the liquid bulk

D :

Maximum inner flask diameter, m

d 0 :

Shaking diameter, Mm

d p :

Average cell diameter, m

DOT:

Dissolved oxygen tension, % air saturation

IVCC:

Integral viable cell concentration, 106 cells ml1 day

k L a :

Volumetric oxygen transfer coefficient, h−1

Lac/Glc:

Lactate/glucose ratio

mAb:

Anti-hIL8 monoclonal antibody

n :

Shaking frequency, Rpm

Ne′:

Modified power number

Ph:

Phase number

P/V:

Power consumption per unit volume, W m3

q Ca2 + :

Specific calcium uptake rate, nmol calcium 106 cells day1

q Glc :

Specific glucose uptake rate, μMol glucose 106 cells day1

q Lac :

Specific lactate production rate, μMol lactate 106 cells day1

q Glu :

Specific glutamate production rate, μMol glutamate 106 cells day1

q NH4 + :

Specific ammonium production rate, μMol ammonium 106 cells day1

q P :

Specific IgG production rate, Pcd 103

Re:

Reynolds number

RP:

Recombinant protein

t D :

Doubling time, h

v :

Dynamic viscosity, Pa s

V N :

Nominal volume, ml

V F :

Filling volume, % liquid volume/nominal flask volume

V :

Filling volume, ml

X max :

Maximum cell concentration 106 cells ml1

Ɛ :

Energy dissipation rate W kg1

Ɛ 0 :

Average energy dissipation rate, W kg1

ρ :

Density, kg m3

μ:

Specific growth rate, h1

λ :

Turbulent eddy length scale, μM

τ :

Average shear stress, N m2

γ :

Shear rate, s1

References

  1. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Müller D (2006) Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6):1033–1044. https://doi.org/10.1002/bit.21013

    Article  CAS  PubMed  Google Scholar 

  2. Zhang H, Wang W, Quan C, Fan S (2010) Engineering considerations for process development in mammalian cell cultivation. Curr Pharm Biotechnol 11(1):103–112. https://doi.org/10.2174/138920110790725320

    Article  CAS  PubMed  Google Scholar 

  3. Nienow AW (2015) Mass transfer and mixing across the scales in animal cell culture. In: Al-Rubeai M (ed) Animal cell culture. Springer, Dublin, pp 137–167. https://doi.org/10.1007/978-3-319-10320-4_5

    Chapter  Google Scholar 

  4. Sundaramurthy S (2009) Mixing in shake flask bioreactor. Encyclopedia of industrial biotechnology. In: Flickinger MC (ed) Bioprocess, bioseparation, and cell technology. John Wiley & Sons Inc., pp 1–17. https://doi.org/10.1002/9780470054581.eib662

    Chapter  Google Scholar 

  5. Czermak P, Pörtner R, Brix A (2009) Special engineering aspects. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin. https://doi.org/10.1007/978-3-540-68182-3_4

    Chapter  Google Scholar 

  6. Chalmers JJ, Ma N (2015) Hydrodynamic damage to animal cells. In: Al-Rubeai M (ed) Animal cell culture. Springer, Dublin, pp 169–183. https://doi.org/10.1007/978-3-319-10320-4_6

    Chapter  Google Scholar 

  7. Maier U, Büchs J (2001) Characterization of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7(2):99–106. https://doi.org/10.1016/S1369-703X(00)00107-8

    Article  CAS  PubMed  Google Scholar 

  8. Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30(6):307–314. https://doi.org/10.1016/j.tibtech.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  9. Micheletti M, Barrett T, Doig SD, Baganz F, Levy MS, Woodley JM, Lye GJ (2006) Fluid mixing in shaken bioreactors: Implications for scale-up predictions from microlitre-scale microbial and mammalian cell cultures. Chem Eng Sci 61(9):2939–2949. https://doi.org/10.1016/j.ces.2005.11.028

    Article  CAS  Google Scholar 

  10. Abidin SZ, Anuar N (2011) Comparison of the production of recombinant protein in suspension culture of CHO cells in spinner flask and shake flask system. IIUM Eng J 12(4):43–49. https://doi.org/10.31436/iiumej.v12i4.180

    Article  Google Scholar 

  11. Platas OB, Sandig V, Pörtner R, Zeng AP (2013) Evaluation of process parameters in shake flasks for mammalian cell culture. BMC Proc (BioMed Central) 7(6):17. https://doi.org/10.1186/1753-6561-7-S6-P17

    Article  Google Scholar 

  12. Qian Y, Xing Z, Lee S, Mackin NA, He A, Kayne PS, He Q, Qian NX, Li ZJ (2014) Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks. Biotechnol J 9(11):1413–1424. https://doi.org/10.1002/biot.201400315

    Article  CAS  PubMed  Google Scholar 

  13. Maschke RW, Seidel S, Bley T, Eibl R, Eibl D (2021) Determination of culture design spaces in shaken disposable cultivation systems for CHO suspension cell cultures. Biochem Eng J 177:108224. https://doi.org/10.1016/j.bej.2021.108224

    Article  CAS  Google Scholar 

  14. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176. https://doi.org/10.1016/j.procbio.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Keane JT, Ryan D, Gray PP (2003) Effect of shear stress on expression of a recombinant protein by Chinese hamster ovary cells. Biotechnol Bioeng 81(2):211–220. https://doi.org/10.1002/bit.10472

    Article  CAS  PubMed  Google Scholar 

  16. Godoy-Silva R, Mollet M, Chalmers JJ (2009) Evaluation of the effect of chronic hydrodynamical stresses on cultures of suspended CHO-6E6 cells. Biotechnol Bioeng 102(4):1119–1130. https://doi.org/10.1002/bit.22146

    Article  CAS  PubMed  Google Scholar 

  17. Godoy-Silva R, Chalmers JJ, Casnocha SA, Bass LA, Ma N (2009) Physiological responses of CHO cells to repetitive hydrodynamic stress. Biotechnol Bioeng 103(6):1103–1117. https://doi.org/10.1002/bit.22339

    Article  CAS  PubMed  Google Scholar 

  18. Ritacco FV, Wu Y, Khetan A (2018) Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnol Prog 34(6):1407–1426. https://doi.org/10.1002/btpr.2706

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Bürki CA, Stettler M, De Sanctis D, Perrone M, Discacciati M, Parolini N, DeJesus M, Hacker DL, Quarteroni A, Wurm FM (2009) Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L. Biochem Eng J 45(1):41–47. https://doi.org/10.1016/j.bej.2009.02.003

    Article  CAS  Google Scholar 

  20. Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33. https://doi.org/10.1007/s10616-006-9005-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68(6):594–601. https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6%3c594::AID-BIT2%3e3.0.CO;2-U

    Article  PubMed  Google Scholar 

  22. Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7(2):91–98. https://doi.org/10.1016/S1369-703X(00)00106-6

    Article  PubMed  Google Scholar 

  23. Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8. https://doi.org/10.1042/BA20040082

    Article  PubMed  Google Scholar 

  24. Tramper J, de Gooijer KD, Vlak JM (2020) Scale-up considerations and bioreactor development for animal cell cultivation. In: Insect cell culture engineering, 1er Ed. CRC Press. 139–177

  25. Pérez-Rodriguez SP, Wulff T, Voldborg BG, Altamirano C, Trujillo-Roldán MA, Valdez-Cruz NA (2021) Compartmentalized proteomic profiling outlines the crucial role of the classical secretory pathway during recombinant protein production in Chinese Hamster Ovary cells. ACS Omega 6(19):12439–12458. https://doi.org/10.1021/acsomega.0c06030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez TN, Leong SR, Presta LG (2000) Nucleic Acids Encoding Humanized Anti-IL-8 Monoclonal Antibodies. US6025158A

  27. Strober W (2015) Trypan blue exclusion test of cell viability. Curr Protoc Immunol 111(1):A3-B. https://doi.org/10.1002/0471142735.ima03bs111

    Article  Google Scholar 

  28. Reynoso-Cereceda GI, Garcia-Cabrera RI, Valdez-Cruz NA, Trujillo-Roldán MA (2016) Shaken flasks by resonant acoustic mixing versus orbital mixing: mass transfer coefficient kLa characterization and Escherichia coli cultures comparison. Biochem Eng J 105(B):379–390. https://doi.org/10.1016/j.bej.2015.10.015

    Article  CAS  Google Scholar 

  29. Van’T Riet K (1979) Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Dev 18(3):357–364. https://doi.org/10.1021/i260071a001

    Article  Google Scholar 

  30. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68(6):589–593. https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6%3c589::AID-BIT1%3e3.0.CO;2-J

    Article  PubMed  Google Scholar 

  31. García-Camacho F, Gallardo-Rodriguez J, Sánchez-Miron A, Cerón-Gracía M, Belarbi E, Molina-Grima E (2007) Determination of shear stress tresholds in toxic dinoflagellates cultured in shake flasks implications in bioprocess engineering. Process Biochem 42:1506–1515. https://doi.org/10.1016/j.procbio.2007.08.001

    Article  CAS  Google Scholar 

  32. Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93(6):1164–1176. https://doi.org/10.1002/bit.20827

    Article  CAS  PubMed  Google Scholar 

  33. Heinrich C, Wolf T, Kropp C, Northoff S, Noll T (2011) Growth characterization of CHO DP-12 cell lines with different high passage histories. BMC Proc 5(Suppl 8):P29. https://doi.org/10.1186/1753-6561-5-S8-P29

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sieck JB, Budach WE, Suemeghy Z, Leist C, Villiger TK, Morbidelli M, Soos M (2014) Adaptation for survival: phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. J Biotechnol 189:94–103. https://doi.org/10.1016/j.jbiotec.2014.08.042

    Article  CAS  PubMed  Google Scholar 

  35. Yoo HC, Yu YC, Sung Y, Han JM (2020) Glutamine reliance in cell metabolism. Exp Mol Med 52:1496–1516. https://doi.org/10.1038/s12276-020-00504-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pörtner R (2009) Characteristics of mammalian cells and requirements for cultivation. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Berlin, pp 13–53. https://doi.org/10.1007/978-3-540-68182-3_2

    Chapter  Google Scholar 

  37. Pörtner R (2015) Bioreactors for mammalian cells. In: Al-Rubeai M (ed) Animal cell culture. Springer, Dublin, pp 89–135. https://doi.org/10.1007/978-3-319-10320-4_4

    Chapter  Google Scholar 

  38. Bürgin T, Coronel J, Hagens G, Keebler MV, Genzel Y, Reich, U, Anderlei T (2020) Orbitally Shaken single-use bioreactor for animal cell cultivation: fed-batch and perfusion mode. In Animal Cell Biotechnology (pp. 105–123). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_7

  39. Kato Y, Tada Y, Iwanaga E, Nagatsu Y, Iwata S, Lee YS, Koh ST (2005) Effects of liquid film formed on flask surface on oxygen transfer rate in shaking flask and development of baffled shaking vessel by optical method based on sulfite oxidation. J Chem Eng Jpn 38(11):873–877. https://doi.org/10.1252/jcej.38.873

    Article  CAS  Google Scholar 

  40. Henzler HJ, Schedel M (1991) Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess Eng 7(3):123–131. https://doi.org/10.1007/BF00369423

    Article  CAS  Google Scholar 

  41. Giese H, Azizan A, Kümmel A, Liao A, Peter CP, Fonseca JA, Hermann R, Duarte TM, Büchs J (2014) Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Biotechnol Bioeng 111(2):295–308. https://doi.org/10.1002/bit.25015

    Article  CAS  PubMed  Google Scholar 

  42. Chopda VR, Holzberg T, Ge X, Folio B, Wong L, Tolosa M, Kostov Y, Tolosa L, Rao G (2020) Real-time dissolved carbon dioxide monitoring II: surface aeration intensification for efficient CO2 removal in shake flasks and mini-bioreactors leads to superior growth and recombinant protein yields. Biotechnol Bioeng 117(4):992–998. https://doi.org/10.1002/bit.27252998|

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Torres M, Zúñiga R, Gutierrez M, Vergara M, Collazo N, Reyes J, Berrios J, Aguillon JC, Molina MM, Altamirano C (2018) Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS ONE 13(3):e0194510. https://doi.org/10.1371/journal.pone.0194510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Toussaint C, Henry O, Durocher Y (2016) Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. J Biotechnol 217:122–131. https://doi.org/10.1016/j.jbiotec.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  45. Konakovsky V, Clemens C, Müller MM, Bechmann J, Berger M, Schlatter S, Herwig C (2016) Metabolic control in mammalian fed-batch cell cultures for reduced lactic acid accumulation and improved process robustness. Bioengineering (Basel) 3(1):5. https://doi.org/10.3390/bioengineering3010005

    Article  CAS  Google Scholar 

  46. Sieck JB, Cordes T, Budach WE, Rhiel MH, Suemeghy Z, Leist C, Villiger TK, Morbidelli M, Soos M (2013) Development of a scaled-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. J Biotechnol 164:41–49. https://doi.org/10.1016/j.jbiotec.2012.11.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Greta I. Reynoso-Cereceda is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received the fellowship number 478675, from “Consejo Nacional de Ciencia y Tecnología” CONACYT. We want to extend our gratitude to Sartorius de México, S.A. de C.V. and Biosystems S.A. de C.V. Also, we thank to Nova Biomedicals for providing access to BioProfile FLEX2 Automated Cell Culture Analyzer.

Funding

This work was supported by “Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, Universidad Nacional Autónoma de México” (PAPIIT-UNAM IN210419, IN210822, IN211422, IV201220). Funding sources had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SP-R, GIR-C, NAV-C, and MAT-R; methodology: SP-R and GIR-C; formal analysis and investigation: SP-R, GIR-C, NAV-C, and MAT-R; writing—original draft preparation: SP-R and GIR-C; writing—review and editing: SP-R, GIR-C, NAV-C, and MAT-R; funding acquisition: NAV-C and MAT-R; resources: NAV-C and MAT-R.

Corresponding author

Correspondence to Mauricio A. Trujillo-Roldán.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1155 KB)

Supplementary file2 (DOCX 74 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rodriguez, S., Reynoso-Cereceda, G.I., Valdez-Cruz, N.A. et al. A comprehensive comparison of mixing and mass transfer in shake flasks and their relationship with MAb productivity of CHO cells. Bioprocess Biosyst Eng 45, 1033–1045 (2022). https://doi.org/10.1007/s00449-022-02722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02722-y

Keywords

Navigation