Skip to main content
Log in

Recent progress of phytogenic synthesis of ZnO, SnO2, and CeO2 nanomaterials

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A critical investigation on the fabrication of metal oxide nanoparticles (NPs) such as ZnO, SnO2, and CeO2 NPs synthesized from green and phytogenic method using plants and various plant parts have been compiled. In this review, different plant extraction methods, synthesis methods, characterization techniques, effects of plant extract on the physical, chemical, and optical properties of green synthesized ZnO, SnO2, and CeO2 NPs also have been compiled and discussed. Effect of several parameters on the size, morphology, and optical band gap energy of metal oxide have been explored. Moreover, the role of solvents has been found important and discussed. Extract composition i.e. phytochemicals also found to affect the morphology and size of the synthesized ZnO, SnO2, and CeO2 NPs. It was found that, there is no universal extraction method that is ideal and extraction techniques is unique to the plant type, plant parts, and solvent used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792. https://doi.org/10.1039/C4CS00363B

    Article  CAS  PubMed  Google Scholar 

  2. Raveendran P, Fu J, Wallen SL (2003) Completely, “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941. https://doi.org/10.1021/ja029267j

    Article  CAS  PubMed  Google Scholar 

  3. Matussin S, Harunsani MH, Tan AL, Khan MM (2020) Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustain Chem Eng 8(8):3040–3054. https://doi.org/10.1021/acssuschemeng.9b06398

    Article  CAS  Google Scholar 

  4. Rahman A, Harunsani MH, Tan AL, Khan MM (2021) Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 44(7):1333–1372. https://doi.org/10.1007/s00449-021-02530-w

    Article  CAS  PubMed  Google Scholar 

  5. Naidi SN, Harunsani MH, Tan AL, Khan MM (2021) Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 9(28):5599–5620. https://doi.org/10.1039/D1TB00248A

    Article  CAS  PubMed  Google Scholar 

  6. Parwaiz S, Khan MM, Pradhan D (2019) CeO2-based nanocomposites: an advanced alternative to TiO2 and ZnO in sunscreens. Mater Express 9(3):185–202. https://doi.org/10.1166/mex.2019.1495

    Article  CAS  Google Scholar 

  7. (2021) Chalcogenide-based nanomaterials as photocatalysts. Khan MM (ed). Elsevier. https://doi.org/10.1016/C2019-0-01819-5

  8. Rahman A, Khan MM (2021) Chalcogenides as photocatalysts. New J Chem 45(42):19622–19635. https://doi.org/10.1039/D1NJ04346C

    Article  CAS  Google Scholar 

  9. Nn A (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 04(03):3–8. https://doi.org/10.4172/2167-0412.1000196

    Article  Google Scholar 

  10. Suna S, Tamer CE, Özcan-Sinir G (2019) Trends and possibilities of the usage of medicinal herbal extracts in beverage production. In Natural beverages. Elsevier, pp 361–398. https://doi.org/10.1016/B978-0-12-816689-5.00013-4.

  11. Prasad AR, Garvasis J, Oruvil SK, Joseph A (2019) Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants. J Phys Chem Solids 127:265–274. https://doi.org/10.1016/j.jpcs.2019.01.003

    Article  CAS  Google Scholar 

  12. Manjari G, Saran S, Radhakrishanan S, Rameshkumar P, Pandikumar A, Devipriya SP (2020) Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J Environ Manag 262:110282. https://doi.org/10.1016/j.jenvman.2020.110282

    Article  CAS  Google Scholar 

  13. Vijayakumar S, Arulmozhi P, Kumar N, Sakthivel B, Prathip Kumar S, Praseetha PK (2020) Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: characterization and antimicrobial activities. Mater Today Proc 23:73–80. https://doi.org/10.1016/j.matpr.2019.06.660

    Article  CAS  Google Scholar 

  14. Duraimurugan J, Kumar GS, Maadeswaran P, Shanavas S, Anbarasan PM, Vasudevan V (2019) Structural, optical and photocatlytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis. J Mater Sci Mater Electron 30(2):1927–1935. https://doi.org/10.1007/s10854-018-0466-2

    Article  CAS  Google Scholar 

  15. Thema FT, Manikandan E, Dhlamini MS, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127. https://doi.org/10.1016/j.matlet.2015.08.052

    Article  CAS  Google Scholar 

  16. Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DCW, Bolan N, Kim KH (2019) The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod 214:1061–1070. https://doi.org/10.1016/j.jclepro.2019.01.018

    Article  CAS  Google Scholar 

  17. Fahimmunisha BA, Ishwarya R, AlSalhi MS, Devanesan S, Govindarajan M, Vaseeharan B (2020) Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Deliv Sci Technol 55:101465. https://doi.org/10.1016/j.jddst.2019.101465

    Article  CAS  Google Scholar 

  18. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater Sci Semicond Process 39:621–628. https://doi.org/10.1016/j.mssp.2015.06.005

    Article  CAS  Google Scholar 

  19. Steffy K, Shanthi G, Maroky AS, Selvakumar S (2018) Journal of Infection and Public Health enhanced antibacterial effects of green synthesized ZnO NPs using Aristolochia indica against multi-drug resistant bacterial pathogens from diabetic foot ulcer. J Infect Public Health 11(4):463–471. https://doi.org/10.1016/j.jiph.2017.10.006

    Article  PubMed  Google Scholar 

  20. Anitha R, Ramesh KV, Ravishankar TN, Sudheer Kumar KH, Ramakrishnappa T (2018) Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J Sci Adv Mater Devices 3(4):440–451. https://doi.org/10.1016/j.jsamd.2018.11.001

    Article  Google Scholar 

  21. Suresh D, Shobharani RM, Nethravathi PC, Pavan Kumar MA, Nagabhushana H, Sharma SC (2015) Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta Part A Mol Biomol Spectrosc 141:128–134. https://doi.org/10.1016/j.saa.2015.01.048

    Article  CAS  Google Scholar 

  22. Vidya C, Manjunatha C, Chandraprabha M, Rajshekar M, Raj MAL (2017) Hazard free green synthesis of ZnO nano-photo-catalyst using Artocarpus heterophyllus leaf extract for the degradation of Congo Red dye in water treatment applications. J Environ Chem Eng 5(4):3172–3180. https://doi.org/10.1016/j.jece.2017.05.058

    Article  CAS  Google Scholar 

  23. Ramanarayanan R, Bhabhina NM, Dharsana MV, Nivedita CV, Sindhu S (2018) Green synthesis of zinc oxide nanoparticles using extract of Averrhoa bilimbi (L.) and their photoelectrode applications. Mater Today Proc 5(8):16472–16477. https://doi.org/10.1016/j.matpr.2018.05.150

    Article  CAS  Google Scholar 

  24. Sharmila G, Muthukumaran C, Sandiya K, Santhiya S, Pradeep Sakthi R, Kumar NM, Suriyanarayanan N, Thirumarimurugan M (2018) Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J Nanostruct Chem 8(3):293–299. https://doi.org/10.1007/s40097-018-0271-8

    Article  CAS  Google Scholar 

  25. Pavan Kumar MA, Suresh D, Nagabhushana H, Sharma SC (2015) Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2015-15109-2

    Article  Google Scholar 

  26. Mahendra C, Chandra MN, Murali M, Abhilash MR, Singh SB, Satish S, Sudarshana M (2020) Phyto-fabricated ZnO nanoparticles from Canthium dicoccum (L.) for antimicrobial, anti-tuberculosis and antioxidant activity. Process Biochem 89:220–226. https://doi.org/10.1016/j.procbio.2019.10.020

    Article  CAS  Google Scholar 

  27. Nilavukkarasi M, Vijayakumar S, Prathipkumar S (2020) Capparis zeylanica mediated bio-synthesized ZnO Nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater Sci Energy Technol 3:335–343. https://doi.org/10.1016/j.mset.2019.12.004

    Article  CAS  Google Scholar 

  28. Lalithamba HS, Raghavendra M, Uma K, Yatish KV, Mousumi D, Nagendra G (2018) Capsicum annuum fruit extract: a novel reducing agent for the green synthesis of ZnO nanoparticles and their multifunctional applications. Acta Chim Slov 65(2):354–364

    Article  CAS  PubMed  Google Scholar 

  29. Nithya K, Kalyanasundharam S (2019) Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity. OpenNano 4:100024. https://doi.org/10.1016/j.onano.2018.10.001

    Article  Google Scholar 

  30. Rathnasamy R, Thangasamy P, Thangamuthu R, Sampath S, Alagan V (2017) Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J Mater Sci Mater Electron 28(14):10374–10381. https://doi.org/10.1007/s10854-017-6807-8

    Article  CAS  Google Scholar 

  31. Ali J, Irshad R, Li B, Tahir K, Ahmad A, Shakeel M, Khan NU, Khan ZUH (2018) Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. J Photochem Photobiol B Biol 183:349–356. https://doi.org/10.1016/j.jphotobiol.2018.05.006

    Article  CAS  Google Scholar 

  32. Saif S, Tahir A, Asim T, Chen Y, Khan M, Adil SF (2019) Green synthesis of ZnO hierarchical microstructures by Cordia myxa and their antibacterial activity. Saudi J Biol Sci 26(7):1364–1371. https://doi.org/10.1016/j.sjbs.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khan MM, Saadah NH, Khan ME, Harunsani MH, Tan AL, Cho MH (2019) Phytogenic synthesis of band gap-narrowed ZnO nanoparticles using the bulb extract of Costus woodsonii. Bionanoscience 9(2):334–344. https://doi.org/10.1007/s12668-019-00616-0

    Article  Google Scholar 

  34. Khan MM, Saadah NH, Khan ME, Harunsani MH, Tan AL, Cho MH (2019) Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater Sci Semicond Process 91:194–200. https://doi.org/10.1016/j.mssp.2018.11.030

    Article  CAS  Google Scholar 

  35. Selim YA, Azb MA, Ragab I, Abd El-Azim MHM (2020) Green synthesis of Zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep 10(1):3445. https://doi.org/10.1038/s41598-020-60541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balaji S, Kumar MB (2017) Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol 28(3):785–797. https://doi.org/10.1016/j.apt.2016.11.026

    Article  CAS  Google Scholar 

  37. Chauhan AK, Kataria N, Garg VK (2020) Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere 247:125803. https://doi.org/10.1016/j.chemosphere.2019.125803

    Article  CAS  PubMed  Google Scholar 

  38. Ahmad W, Kalra D (2020) Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J King Saud Univ Sci 32(4):2358–2364. https://doi.org/10.1016/j.jksus.2020.03.014

    Article  Google Scholar 

  39. Geetha MS, Nagabhushana H, Shivananjaiah HN (2016) Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia jatropa latex as reducing agent. J Sci Adv Mater Devices 1(3):301–310. https://doi.org/10.1016/j.jsamd.2016.06.015

    Article  Google Scholar 

  40. Raghavendra M, Yatish KV, Lalithamba HS (2017) Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production. Eur Phys J Plus 132(8):358. https://doi.org/10.1140/epjp/i2017-11627-1

    Article  CAS  Google Scholar 

  41. Aminuzzaman M, Ying LP, Goh W-S, Watanabe A (2018) Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci 41(2):50. https://doi.org/10.1007/s12034-018-1568-4

    Article  CAS  Google Scholar 

  42. Nethravathi PC, Shruthi GS, Suresh D, Udayabhanu, Nagabhushana H, Sharma SC (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41(7):8680–8687. https://doi.org/10.1016/j.ceramint.2015.03.084

    Article  CAS  Google Scholar 

  43. Chai H-Y, Lam S-M, Sin J-C (2019) Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities. Mater Lett 242:103–106. https://doi.org/10.1016/j.matlet.2019.01.116

    Article  CAS  Google Scholar 

  44. Soto-Robles CA, Luque PA, Gómez-Gutiérrez CM, Nava O, Vilchis-Nestor AR, Lugo-Medina E, Ranjithkumar R, Castro-Beltrán A (2019) Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results Phys 15:102807. https://doi.org/10.1016/j.rinp.2019.102807

    Article  Google Scholar 

  45. Karunakaran G, Jagathambal M, Kumar GS, Kolesnikov E (2020) Hylotelephium telephium flower extract-mediated biosynthesis of CuO and ZnO nanoparticles with promising antioxidant and antibacterial properties for healthcare applications. JOM 72(3):1264–1272. https://doi.org/10.1007/s11837-020-04007-9

    Article  CAS  Google Scholar 

  46. Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA, Bisetty K (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol B Biol 162:199–207. https://doi.org/10.1016/j.jphotobiol.2016.06.043

    Article  CAS  Google Scholar 

  47. Pandiyan N, Murugesan B, Arumugam M, Sonamuthu J, Samayanan S, Mahalingam S (2019) Ionic liquid—a greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag–Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J Photochem Photobiol B Biol 198:111559. https://doi.org/10.1016/j.jphotobiol.2019.111559

    Article  CAS  Google Scholar 

  48. Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Azamay S, Ahmad N (2020) Antibacterial activities of zinc oxide and Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract. Bioprocess Biosyst Eng 43(8):1499–1508. https://doi.org/10.1007/s00449-020-02343-3

    Article  CAS  PubMed  Google Scholar 

  49. Dhandapani KV, Anbumani D, Gandhi AD, Annamalai P, Muthuvenkatachalam BS, Kavitha P, Ranganathan B (2020) Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatal Agric Biotechnol 24:101517. https://doi.org/10.1016/j.bcab.2020.101517

    Article  Google Scholar 

  50. Bordbar M, Negahdar N, Nasrollahzadeh M (2018) Melissa officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and rhodamine B. Sep Purif Technol 191:295–300. https://doi.org/10.1016/j.seppur.2017.09.044

    Article  CAS  Google Scholar 

  51. Rajeswari M, Agrawal P, Roopa GS, Jain AA, Gupta PK (2018) Green synthesis and characterization of multifunctional zinc oxide nanomaterials using extract of Moringa oleifera seed. Mater Today Proc 5(10):20996–21002. https://doi.org/10.1016/j.matpr.2018.06.491

    Article  CAS  Google Scholar 

  52. Archana B, Manjunath K, Nagaraju G, Chandra Sekhar KB, Kottam N (2017) Enhanced photocatalytic hydrogen generation and photostability of ZnO Nanoparticles obtained via green synthesis. Int J Hydrog Energy 42(8):5125–5131. https://doi.org/10.1016/j.ijhydene.2016.11.099

    Article  CAS  Google Scholar 

  53. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30(2):168–175. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  54. Subbiah R, Muthukumaran S, Raja V (2020) Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using Ocimum tenuiflorum leaf extract. Optik (Stuttg) 208:164556. https://doi.org/10.1016/j.ijleo.2020.164556

    Article  CAS  Google Scholar 

  55. Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380. https://doi.org/10.1016/j.jcis.2019.12.079

    Article  CAS  PubMed  Google Scholar 

  56. Azizi S, Namvar F, Mohamad R, Md Tahir P, Mahdavi M (2015) Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles. Mater Lett 148:106–109. https://doi.org/10.1016/j.matlet.2015.02.080

    Article  CAS  Google Scholar 

  57. Sheik Mydeen S, Raj Kumar R, Kottaisamy M, Vasantha VS (2020) Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: antibacterial activities and a new approach by rust-induced photocatalysis. J Saudi Chem Soc 24(5):393–406. https://doi.org/10.1016/j.jscs.2020.03.003

    Article  CAS  Google Scholar 

  58. Umaralikhan L, Jaffar MJM (2017) Green synthesis of ZnO and Mg doped ZnO nanoparticles, and its optical properties. J Mater Sci Mater Electron 28(11):7677–7685. https://doi.org/10.1007/s10854-017-6461-1

    Article  CAS  Google Scholar 

  59. Moghaddas SMTH, Elahi B, Javanbakht V (2020) Biosynthesis of pure zinc oxide nanoparticles using quince seed mucilage for photocatalytic dye degradation. J Alloys Compd 821:153519. https://doi.org/10.1016/j.jallcom.2019.153519

    Article  CAS  Google Scholar 

  60. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365. https://doi.org/10.1016/j.molstruc.2016.07.029

    Article  CAS  Google Scholar 

  61. Liu D, Liu L, Yao L, Peng X, Li Y, Jiang T, Kuang H (2020) Synthesis of ZnO nanoparticles using radish root extract for effective wound dressing agents for diabetic foot ulcers in nursing care. J Drug Deliv Sci Technol 55(23):101364. https://doi.org/10.1016/j.jddst.2019.101364

    Article  CAS  Google Scholar 

  62. Kiran Kumar ABV, Saila ES, Narang P, Aishwarya M, Raina R, Gautam M, Shankar EG (2019) Biofunctionalization and biological synthesis of the ZnO nanoparticles: the effect of Raphanus sativus (white radish) root extract on antimicrobial activity against MDR strain for wound healing applications. Inorg Chem Commun 100:101–106. https://doi.org/10.1016/j.inoche.2018.12.014

    Article  CAS  Google Scholar 

  63. Shobha N, Nanda N, Giresha AS, Manjappa P, Dharmappa KK, Nagabhushana BM (2019) Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater Sci Eng C 97:842–850. https://doi.org/10.1016/j.msec.2018.12.023

    Article  CAS  Google Scholar 

  64. Lingaraju K, Raja Naika H, Manjunath K, Basavaraj RB, Nagabhushana H, Nagaraju G, Suresh D (2016) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 6(5):703–710. https://doi.org/10.1007/s13204-015-0487-6

    Article  CAS  Google Scholar 

  65. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 136:864–870. https://doi.org/10.1016/j.saa.2014.09.105

    Article  CAS  Google Scholar 

  66. Xu K, Yan H, Cao M, Shao X (2020) Selaginella Convolute extract mediated synthesis of ZnO NPs for pain management in emerging nursing care. J Photochem Photobiol B Biol 202:111700. https://doi.org/10.1016/j.jphotobiol.2019.111700

    Article  CAS  Google Scholar 

  67. Babu AT, Antony R (2019) Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J Environ Chem Eng 7(1):102840. https://doi.org/10.1016/j.jece.2018.102840

    Article  CAS  Google Scholar 

  68. Muthuvel A, Jothibas M, Manoharan C (2020) Effect of chemically synthesis compared to biosynthesized ZnO-NPs using solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J Environ Chem Eng 8(2):103705. https://doi.org/10.1016/j.jece.2020.103705

    Article  CAS  Google Scholar 

  69. Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Poi YA, Ahmad N (2020) Antibacterial studies of ZnO and Cu-doped ZnO nanoparticles synthesized using aqueous leaf extract of Stachytarpheta jamaicensis. Bionanoscience. https://doi.org/10.1007/s12668-020-00775-5

    Article  Google Scholar 

  70. Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B Biol 181:53–58. https://doi.org/10.1016/j.jphotobiol.2018.02.011

    Article  CAS  Google Scholar 

  71. Rana N, Chand S, Gathania AK (2016) Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. Int Nano Lett 6(2):91–98. https://doi.org/10.1007/s40089-015-0171-6

    Article  CAS  Google Scholar 

  72. Yulizar Y, Bakri R, Apriandanu DOB, Hidayat T (2018) ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao. Nano Struct Nano Obj 16:300–305. https://doi.org/10.1016/j.nanoso.2018.09.003

    Article  CAS  Google Scholar 

  73. Zare M, Namratha K, Thakur MS, Byrappa K (2019) Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater Res Bull 109:49–59. https://doi.org/10.1016/j.materresbull.2018.09.025

    Article  CAS  Google Scholar 

  74. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523. https://doi.org/10.1016/j.sjbs.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  75. Rahman A, Harunsani MH, Tan AL, Ahmad N, Khan MM (2021) Antioxidant and antibacterial studies of phytogenic fabricated ZnO using aqueous leaf extract of Ziziphus mauritiana Lam. Chem Pap 75(7):3295–3308. https://doi.org/10.1007/s11696-021-01553-7

    Article  CAS  Google Scholar 

  76. Semenya CJ, Maseko RB, Gololo SS (2018) Comparative qualitative phytochemical analysis of the different parts of Barleria dinteri (Oberm): a contribution to sustainable use of the plant species. J Pharm Chem Biol Sci 6:52–59

    CAS  Google Scholar 

  77. Xu F, Guo W, Xu W, Wei Y, Wang R (2009) Leaf morphology correlates with water and light availability: what consequences for simple and compound leaves. Prog Nat Sci 19(12):1789–1798. https://doi.org/10.1016/j.pnsc.2009.10.001

    Article  Google Scholar 

  78. Sokolov SV, Batchelor-Mcauley C, Tschulik K, Fletcher S, Compton RG (2015) Are nanoparticles spherical or quasi-spherical? Chem A Eur J 21(30):10741–10746. https://doi.org/10.1002/chem.201500807

    Article  CAS  Google Scholar 

  79. Crawford BCW, Yanofsky MF (2008) The formation and function of the female reproductive tract in flowering plants. Curr Biol 18(20):972–978. https://doi.org/10.1016/j.cub.2008.08.010

    Article  CAS  Google Scholar 

  80. Kumari KLNW, Abeysinghe DC, Dharmadasa RM (2016) Distribution of phytochemicals and bioactivity in different parts and leaf positions of Stevia rebaudiana (Bertoni) Bertoni-a non-caloric, natural sweetener. World J Agric Res 4(6):162–165

    Google Scholar 

  81. Krishnan HB, Coe EH (2001) Seed storage proteins. In Encyclopedia of genetics. Elsevier. p 1782–1787. https://doi.org/10.1006/rwgn.2001.1714

  82. Ansari MA, Alzohairy MA (2018) One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid Based Compl Altern Med 2018:1–9. https://doi.org/10.1155/2018/1860280

    Article  Google Scholar 

  83. Piližota V (2014) Fruits and vegetables (including herbs). In Food safety management: a practical guide for the food industry; Elsevier. p 213–249. https://doi.org/10.1016/B978-0-12-381504-0.00009-3

  84. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  85. Khan SH, Pathak B (2020) Zinc oxide based photocatalytic degradation of persistent pesticides: a comprehensive review. Environ Nanotechnol Monit Manag 13:100290. https://doi.org/10.1016/j.enmm.2020.100290

    Article  Google Scholar 

  86. Rahman A, Harunsani MH, Tan AL, Ahmad N, Hojamberdiev M, Khan MM (2021) Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies. Bioprocess Biosyst Eng 44(4):875–889. https://doi.org/10.1007/s00449-020-02496-1

    Article  CAS  PubMed  Google Scholar 

  87. Rahman A, Tan AL, Harunsani MH, Ahmad N, Hojamberdiev M, Khan MM (2021) Visible light induced antibacterial and antioxidant studies of ZnO and Cu-doped ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. J Environ Chem Eng 9(4):105481. https://doi.org/10.1016/j.jece.2021.105481

    Article  CAS  Google Scholar 

  88. Rahman A, Harunsani MH, Tan AL, Ahmad N, Min BK, Khan MM (2021) Influence of Mg and Cu dual-doping on phytogenic synthesized ZnO for light induced antibacterial and radical scavenging activities. Mater Sci Semicond Process 128:105761. https://doi.org/10.1016/j.mssp.2021.105761

    Article  CAS  Google Scholar 

  89. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5(5):4866–4883. https://doi.org/10.1016/j.jece.2017.09.026

    Article  CAS  Google Scholar 

  90. Centre N (2012) Green synthesis of nanostructured materials for antibacterial and antifungal activities. Int J Bioassays 304–311

  91. Roopan SM, Kumar SHS, Madhumitha G, Suthindhiran K (2015) Biogenic-production of SnO2 nanoparticles and its cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotechnol 175(3):1567–1575. https://doi.org/10.1007/s12010-014-1381-5

    Article  CAS  PubMed  Google Scholar 

  92. Sudhaparimala S (2014) Green synthesis of tin based nano medicine: assessment of microstructure and surface property. Am J Nanosci Nanotechnol 2(4):75

    Article  CAS  Google Scholar 

  93. Diallo A, Manikandan E, Rajendran V, Maaza M (2016) Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J Alloys Compd 681:561–570. https://doi.org/10.1016/j.jallcom.2016.04.200

    Article  CAS  Google Scholar 

  94. Osuntokun J, Onwudiwe DC, Ebenso EE (2017) Biosynthesis and photocatalytic properties of SnO2 nanoparticles prepared using aqueous extract of cauliflower. J Clust Sci 28(4):1883–1896. https://doi.org/10.1007/s10876-017-1188-y

    Article  CAS  Google Scholar 

  95. Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B Biol 155:34–38. https://doi.org/10.1016/j.jphotobiol.2015.12.010

    Article  CAS  Google Scholar 

  96. Bhosale TT, Shinde HM, Gavade NL, Babar SB, Gawade VV, Sabale SR, Kamble RJ, Shirke BS, Garadkar KM (2018) Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. J Mater Sci Mater Electron 29(8):6826–6834. https://doi.org/10.1007/s10854-018-8669-0

    Article  CAS  Google Scholar 

  97. Selvakumari JC, Ahila M, Malligavathy M, Padiyan DP (2017) Structural, morphological, and optical properties of Tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach. Int J Miner Metall Mater 24(9):1043–1051. https://doi.org/10.1007/s12613-017-1494-2

    Article  CAS  Google Scholar 

  98. Haritha E, Roopan SM, Madhavi G, Elango G, Al-Dhabi NA, Arasu MV (2016) Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. J Photochem Photobiol B Biol 162:441–447. https://doi.org/10.1016/j.jphotobiol.2016.07.010

    Article  CAS  Google Scholar 

  99. Gattu KP, Ghule K, Kashale AA, Patil VB, Phase DM, Mane RS, Han SH, Sharma R, Ghule AV (2015) Bio-green synthesis of Ni-doped tin oxide nanoparticles and its influence on gas sensing properties. RSC Adv 5(89):72849–72856. https://doi.org/10.1039/C5RA13513C

    Article  CAS  Google Scholar 

  100. Rajendran A (2017) Eco-friendly synthesis and characterization of nanostructure SnO2 thin films using Citrus aurantifolia peel extract by spin coating method. Nanomed Res J. 6(4):5–7. https://doi.org/10.15406/jnmr.2017.06.00164

    Article  Google Scholar 

  101. Luque PA, Nava O, Soto-Robles CA, Chinchillas-Chinchillas MJ, Garrafa-Galvez HE, Baez-Lopez YA, Valdez-Núñez KP, Vilchis-Nestor AR, Castro-Beltrán A (2020) Improved photocatalytic efficiency of SnO2 nanoparticles through green synthesis. Optik (Stuttg). https://doi.org/10.1016/j.ijleo.2020.164299

    Article  Google Scholar 

  102. Kamaraj P, Vennila R, Arthanareeswari M, Devikala S (2014) Biological activities of tin oxide nanoparticles synthesized using plant extract. World J Pharm Pharm Sci 3(9):382–388

    Google Scholar 

  103. Khan SA, Kanwal S, Rizwan K, Shahid S (2018) Enhanced antimicrobial, antioxidant, in vivo antitumor and in vitro anticancer effects against breast caner cell line by green synthesized un-doped SnO2 and co-doped SnO2 nanoparticles from Clerodendrum Inerme. Microb Pathog 125(June):366–384. https://doi.org/10.1016/j.micpath.2018.09.041

    Article  CAS  PubMed  Google Scholar 

  104. Haq S, Rehman W, Waseem M, Shahid M, Rehman MU, Shah KH, Nawaz M (2016) Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles. Mater Res Express 3(10):1–9. https://doi.org/10.1088/2053-1591/3/10/105019

    Article  CAS  Google Scholar 

  105. Hu J (2015) Biosynthesis of SnO2 nanoparticles by fig (Ficus carica) leaf extract for electrochemically determining Hg(II) in water samples. Int J Electrochem Sci 10(12):10668–10676. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  Google Scholar 

  106. Hong GB, Jiang CJ (2017) Synthesis of SnO2 nanoparticles using extracts from Litsea cubeba fruits. Mater Lett 194:164–167. https://doi.org/10.1016/j.matlet.2017.02.058

    Article  CAS  Google Scholar 

  107. Begum S, Ahmaruzzaman M (2018) Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties. J Photochem Photobiol B Biol 184(May):44–53. https://doi.org/10.1016/j.jphotobiol.2018.04.041

    Article  CAS  Google Scholar 

  108. Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta Part A Mol Biomol Spectrosc 145:176–180. https://doi.org/10.1016/j.saa.2015.03.033

    Article  CAS  Google Scholar 

  109. Begum S, Ahmaruzzaman M (2018) Green synthesis of SnO2 nanoparticles loaded on activated carbon and its application as photocalayst in the degradation of alizarin red S dye. Mater Today Proc 5(1):2314–2320. https://doi.org/10.1016/j.matpr.2017.09.235

    Article  CAS  Google Scholar 

  110. Singh J, Kaur N, Kaur P, Kaur S, Kaur J, Kukkar P, Kumar V, Kukkar D, Rawat M (2018) Piper Betle leaves mediated synthesis of biogenic SnO2 nanoparticles for photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/J.ENMM.2018.07.001

    Article  Google Scholar 

  111. Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. https://doi.org/10.1016/j.jphotobiol.2016.11.017

    Article  CAS  Google Scholar 

  112. Fu L, Zheng Y, Ren Q, Wang A, Deng B (2015) Green biosynthesis of SnO2 nanoparticles by Plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. J Ovonic Res 11(1):21–26

    CAS  Google Scholar 

  113. Kumar M, Mehta A, Mishra A, Singh J, Rawat M, Basu S (2018) Biosynthesis of tin oxide nanoparticles using Psidium guajava leave extract for photocatalytic dye degradation under sunlight. Mater Lett 215:121–124. https://doi.org/10.1016/j.matlet.2017.12.074

    Article  CAS  Google Scholar 

  114. Meena Kumari M, Philip D (2015) Synthesis of biogenic SnO2 nanoparticles and evaluation of thermal, rheological, antibacterial and antioxidant activities. Powder Technol 270:312–319. https://doi.org/10.1016/j.powtec.2014.10.034

    Article  CAS  Google Scholar 

  115. Merlin M, Chitra S (2018) Synthesis and characterization of tin oxide nanoparticles using plant extract. Int J Pure Appl Math 10(2):17–20

    CAS  Google Scholar 

  116. Nathan MGT, Myvizhi P (2018) Green synthesis and characterization of tin oxide nanoparticles using plant extract. Int J Pure Appl Math 119(12):6439–6448

    Google Scholar 

  117. Begum S, Ahmaruzzaman M (2018) Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen. Appl Surf Sci 449:780–789. https://doi.org/10.1016/j.apsusc.2018.02.069

    Article  CAS  Google Scholar 

  118. Sinha T, Ahmaruzzaman M, Adhikari PP, Bora R (2017) Green and environmentally sustainable fabrication of Ag–SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent. ACS Sustain Chem Eng 5(6):4645–4655. https://doi.org/10.1021/acssuschemeng.6b03114

    Article  CAS  Google Scholar 

  119. Vidhu VK, Philip D (2015) Biogenic synthesis of SnO2 nanoparticles : evaluation of antibacterial and antioxidant activities. Spectrochim Acta Part A Mol Biomol Spectrosc 134:372–379. https://doi.org/10.1016/j.saa.2014.06.131

    Article  CAS  Google Scholar 

  120. Matussin SN, Harunsani MH, Tan AL, Mohammad A, Cho MH, Khan MM (2020) Photoantioxidant studies of SnO2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sci 105:106279. https://doi.org/10.1016/j.solidstatesciences.2020.106279

    Article  CAS  Google Scholar 

  121. Vidhu VK, Philip D (2015) Phytosynthesis and applications of bioactive SnO2 nanoparticles. Mater Charact 101:97–105. https://doi.org/10.1016/j.matchar.2014.12.027

    Article  CAS  Google Scholar 

  122. Bhattacharjee A, Ahmaruzzaman M, Devi TB, Nath J (2016) Photodegradation of methyl violet 6B and methylene blue using tin-oxide nanoparticles (synthesized via a green route). J Photochem Photobiol A Chem 325:116–124. https://doi.org/10.1016/j.jphotochem.2016.03.032

    Article  CAS  Google Scholar 

  123. Roopan SM, Palaniraja J, Elango G, Arunachalam P, Sudhakaran R (2016) Catalytic application of non-toxic Persia americana metabolite entrapped SnO2 nanoparticles towards the synthesis of 3,4-dihydroacridin-1(2H)-ones. RSC Adv 6(25):21072–21075. https://doi.org/10.1039/c5ra25975d

    Article  CAS  Google Scholar 

  124. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189–190:1–20. https://doi.org/10.1016/j.cis.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  125. Bhattacharjee A, Sinha T (2014) Oxide nanoparticles and its exploitation as a recyclable catalyst for the elimination of toxic dye : a green and efficient approach for wastewater. RSC Adv. https://doi.org/10.1039/c4ra08461f

    Article  Google Scholar 

  126. Matussin SN, Tan AL, Harunsani MH, Mohammad A, Cho MH, Khan MM (2020) Effect of Ni-doping on properties of the SnO2 synthesized using Tradescantia spathacea for photoantioxidant studies. Mater Chem Phys 252:123293. https://doi.org/10.1016/j.matchemphys.2020.123293

    Article  CAS  Google Scholar 

  127. Matussin SN, Tan AL, Harunsani MH, Cho MH, Khan MM (2021) Green and phytogenic fabrication of co-doped SnO2 using aqueous leaf extract of Tradescantia spathacea for photoantioxidant and photocatalytic studies. Bionanoscience 11(1):120–135. https://doi.org/10.1007/s12668-020-00820-3

    Article  Google Scholar 

  128. Matussin SN, Harunsani MH, Tan AL, Cho MH, Khan MM (2020) Effect of Co2+ and Ni2+ co-doping on SnO2 synthesized via phytogenic method for photoantioxidant studies and photoconversion of 4-nitrophenol. Mater Today Commun 25(September):101677. https://doi.org/10.1016/j.mtcomm.2020.101677

    Article  CAS  Google Scholar 

  129. Gayathri V, Kiruba D (2014) Preliminary phytochemical analysis of leaf powder extracts of Psidium guajava L. Int J Pharmacogn Phytochem Res 6(2):332–334

    Google Scholar 

  130. Vennila R, Hasina Banu A, Kamaraj P, Devikala S, Arthanareeswari M, Selvi JA, Pushpamalini T, Buela JG, Priya D, Sivasankari R (2018) A novel glucose sensor using green synthesized Ag doped CeO2 nanoparticles. Mater Today Proc 5(2):8683–8690. https://doi.org/10.1016/j.matpr.2017.12.294

    Article  CAS  Google Scholar 

  131. Moradi B, Nabiyouni G, Ghanbari D (2018) Rapid photo-degradation of toxic dye pollutants: green synthesis of mono-disperse Fe3O4–CeO2 nanocomposites in the presence of lemon extract. J Mater Sci Mater Electron 29(13):11065–11080. https://doi.org/10.1007/s10854-018-9189-7

    Article  CAS  Google Scholar 

  132. Surendra TV, Roopan SM (2016) Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J Photochem Photobiol B Biol 161:122–128. https://doi.org/10.1016/j.jphotobiol.2016.05.019

    Article  CAS  Google Scholar 

  133. Elahi B, Mirzaee M, Darroudi M, Kazemi Oskuee R, Sadri K, Amiri MS (2019) Preparation of cerium oxide nanoparticles in salvia Macrosiphon boiss seeds extract and investigation of their photo-catalytic activities. Ceram Int 45(4):4790–4797. https://doi.org/10.1016/j.ceramint.2018.11.173

    Article  CAS  Google Scholar 

  134. Maensiri S, Labuayai S, Laokul P, Klinkaewnarong J, Swatsitang E (2014) Structure and optical properties of CeO2 nanoparticles prepared by using lemongrass plant extract solution. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.53.06JG14

    Article  Google Scholar 

  135. Chen G, Xu Y (2017) Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male sprague Dawley rats. Mater Sci Eng C 2018(83):148–153. https://doi.org/10.1016/j.msec.2017.11.014

    Article  CAS  Google Scholar 

  136. Goula AM, Thymiatis K, Kaderides K (2016) Valorization of grape pomace: drying behavior and ultrasound extraction of phenolics. Food Bioprod Process 100:132–144. https://doi.org/10.1016/j.fbp.2016.06.016

    Article  CAS  Google Scholar 

  137. Hartley RD, Morrison WH, Himmelsbach DS, Borneman WS (1990) Cross-linking of cell wall phenolic arabinoxylans in Graminaceous plants. Phytochemistry 29(12):3705–3709. https://doi.org/10.1016/0031-9422(90)85317-9

    Article  CAS  Google Scholar 

  138. Drosou C, Kyriakopoulou K, Bimpilas A, Tsimogiannis D, Krokida M (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod 75:141–149. https://doi.org/10.1016/j.indcrop.2015.05.063

    Article  CAS  Google Scholar 

  139. Patil SN, Paradeshi JS, Chaudhari PB, Mishra SJ, Chaudhari BL (2016) Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide. Appl Biochem Biotechnol 180(4):638–654. https://doi.org/10.1007/s12010-016-2121-9

    Article  CAS  PubMed  Google Scholar 

  140. Magudieshwaran R, Ishii J, Raja KCN, Terashima C, Venkatachalam R, Fujishima A, Pitchaimuthu S (2019) Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater Lett 239:40–44

    Article  CAS  Google Scholar 

  141. Dayakar T, Rao KV, Bikshalu K, Malapati V, Sadasivuni KK (2018) Non-enzymatic sensing of glucose using screen-printed electrode modified with novel synthesized CeO2@CuO core shell nanostructure. Biosens Bioelectron 111:166–173. https://doi.org/10.1016/j.bios.2018.03.063

    Article  CAS  Google Scholar 

  142. Zamani A, Marjani AP, Alimoradlu K (2018) Walnut shell-templated ceria nanoparticles: green synthesis, characterization and catalytic application. Int J Nanosci 17(6):1–8. https://doi.org/10.1142/S0219581X18500084

    Article  CAS  Google Scholar 

  143. Maensiri S, Masingboon C, Laokul P, Jareonboon W (2007) Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles. ACS Cryst Growth Des 7(5):950–955

    Article  CAS  Google Scholar 

  144. Ferreira NS, Angélica RS, Marques VB, De Lima CCO, Silva MS (2016) Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles. Mater Lett 165:139–142. https://doi.org/10.1016/j.matlet.2015.11.107

    Article  CAS  Google Scholar 

  145. Sangsefidi FS, Nejati M, Verdi J, Salavati-Niasari M (2017) Green synthesis and characterization of cerium oxide nanostructures in the presence carbohydrate sugars as a capping agent and investigation of their cytotoxicity on the mesenchymal stem cell. J Clean Prod 156:741–749. https://doi.org/10.1016/j.jclepro.2017.04.114

    Article  CAS  Google Scholar 

  146. Sangsefidi FS, Salavati-Niasari M, Mazaheri S, Sabet M (2017) Controlled green synthesis and characterization of CeO2 nanostructures as Materials for the determination of ascorbic acid. J Mol Liq 241:772–781. https://doi.org/10.1016/j.molliq.2017.06.078

    Article  CAS  Google Scholar 

  147. Arasu MV, Thirumamagal R, Srinivasan MP, Al-Dhabi NA, Ayeshamariam A, Saravana Kumar D, Punithavelan N, Jayachandran M (2017) Green chemical approach towards the synthesis of CeO2 doped with seashell and its bacterial applications intermediated with fruit extracts. J Photochem Photobiol B Biol 173(May):50–60. https://doi.org/10.1016/j.jphotobiol.2017.05.032

    Article  CAS  Google Scholar 

  148. Reddy Yadav LS, Manjunath K, Archana B, Madhu C, Raja Naika H, Nagabhushana H, Kavitha C, Nagaraju G (2016) Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2016-16154-y

    Article  Google Scholar 

  149. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49:408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  150. Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M (2015) Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J Alloys Compd 647:392–396. https://doi.org/10.1016/j.jallcom.2015.06.076

    Article  CAS  Google Scholar 

  151. Sreekanth TVM, Dillip GR, Lee YR (2016) Picrasma Quassioides mediated cerium oxide nanostructures and their post-annealing treatment on the microstructural, morphological and enhanced catalytic performance. Ceram Int 42(6):6610–6618. https://doi.org/10.1016/j.ceramint.2015.12.171

    Article  CAS  Google Scholar 

  152. Anand K, Murugan V, Mohana Roopan S, Surendra TV, Chuturgoon AA, Muniyasamy S (2018) Degradation treatment of 4-nitrophenol by Moringa oleifera synthesised GO–CeO2 nanoparticles as catalyst. J Inorg Organomet Polym Mater 28(6):2241–2248. https://doi.org/10.1007/s10904-018-0891-y

    Article  CAS  Google Scholar 

  153. Elahi B, Mirzaee M, Darroudi M, Kazemi Oskuee R, Sadri K, Gholami L (2020) Role of oxygen vacancies on photo-catalytic activities of green synthesized ceria nanoparticles in Cydonia oblonga Miller seeds extract and evaluation of its cytotoxicity effects. J Alloys Compd 816:152553. https://doi.org/10.1016/j.jallcom.2019.152553

    Article  CAS  Google Scholar 

  154. Naidi SN, Khan F, Tan AL, Harunsani MH, Kim Y-M, Khan MM (2021) Photoantioxidant and antibiofilm studies of green synthesized Sn-doped CeO2 nanoparticles using aqueous leaf extracts of Pometia pinnata. New J Chem 45(17):7816–7829. https://doi.org/10.1039/D1NJ00416F

    Article  CAS  Google Scholar 

  155. Naidi SN, Khan F, Tan AL, Harunsani MH, Kim Y-M, Khan MM (2021) Green synthesis of CeO2 and Zr/Sn-dual doped CeO2 nanoparticles with photoantioxidant and antibiofilm activities. Biomater Sci. https://doi.org/10.1039/D1BM00298H

    Article  PubMed  Google Scholar 

  156. Kannan SK, Sundrarajan M (2014) A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity. Int J Nanosci 13(03):1450018. https://doi.org/10.1142/S0219581X14500185

    Article  CAS  Google Scholar 

  157. Dutta D, Mukherjee R, Patra M, Banik M, Dasgupta R, Mukherjee M, Basu T (2016) Green synthesized cerium oxide nanoparticle: a prospective drug against oxidative harm. Colloids Surfaces B Biointerfaces 147:45–53. https://doi.org/10.1016/j.colsurfb.2016.07.045

    Article  CAS  PubMed  Google Scholar 

  158. Pisal V, Wakchaure P, Patil N, Bhagwat S (2019) Green synthesized CeO2 quantum dots: a study of its antimicrobial potential. Mater Res Express 6(11):10. https://doi.org/10.1088/2053-1591/ab4fa5

    Article  Google Scholar 

  159. Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta SK, Singh G (2017) Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mater Res Bull 91:98–107. https://doi.org/10.1016/j.materresbull.2017.03.034

    Article  CAS  Google Scholar 

  160. Javadi F, Yazdi MET, Baghani M, Es-haghi A (2019) Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater Res Express 6:065408

    Article  CAS  Google Scholar 

  161. Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, Anwaar S, Abbas F, Jan T (2016) Antimicrobial potential of green synthesized CeO2 nanoparticles from olea Europaea leaf extract. Int J Nanomed 11:5015–5025. https://doi.org/10.2147/IJN.S113508

    Article  CAS  Google Scholar 

  162. Maqbool Q, Nazar M, Maqbool A, Pervez MT, Jabeen N, Hussain T, Franklin G (2018) CuO and CeO2 nanostructures green synthesized using olive leaf extract inhibits the growth of highly virulent multidrug resistant bacteria. Front Pharmacol. https://doi.org/10.3389/fphar.2018.00987

    Article  PubMed  PubMed Central  Google Scholar 

  163. Aseyd Nezhad S, Es-haghi A, Tabrizi MH (2020) Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl Organomet Chem 34(2):1–10. https://doi.org/10.1002/aoc.5314

    Article  CAS  Google Scholar 

  164. Sharmila G, Muthukumaran C, Saraswathi H, Sangeetha E, Soundarya S, Kumar NM (2019) Green synthesis, characterization and biological activities of nanoceria. Ceram Int 45(9):12382–12386. https://doi.org/10.1016/j.ceramint.2019.03.164

    Article  CAS  Google Scholar 

  165. Arunachalam T, Karpagasundaram U, Rajarathinam N (2017) Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Mater Sci Pol 35(4):791–798. https://doi.org/10.1515/msp-2017-0104

    Article  CAS  Google Scholar 

  166. Chen F, Wang W, Chen Z, Wang T (2012) Biogenic synthesis and catalysis of porous CeO2 hollow microspheres. J Rare Earths 30(4):350–354. https://doi.org/10.1016/S1002-0721(12)60058-1

    Article  CAS  Google Scholar 

  167. Sisubalan N, Ramkumar VS, Pugazhendhi A, Karthikeyan C, Indira K, Gopinath K, Hameed ASH, Basha MHG (2018) ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ Sci Pollut Res 25(11):10482–10492. https://doi.org/10.1007/s11356-017-0003-5

    Article  CAS  Google Scholar 

  168. Senthilkumar RP, Bhuvaneshwari V, Ranjithkumar R, Sathiyavimal S, Malayaman V, Chandarshekar B (2017) Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: as a bionanomaterials. Int J Biol Macromol 104:1746–1752. https://doi.org/10.1016/j.ijbiomac.2017.03.139

    Article  CAS  PubMed  Google Scholar 

  169. Senthilkumar RP, Bhuvaneshwari V, Malayaman V, Chitra G, Ranjithkumar R, Dinesh KPB, Chandarshekar B (2019) Biogenic method of cerium oxide nanoparticles synthesis using wireweed (Sida acuta Burm. f.) and its antibacterial activity against Escherichia coli. Mater. Res Express 6:105026

    Article  CAS  Google Scholar 

  170. Khatami M, Sarani M, Mosazadeh F, Rajabalipour M, Izadi A, Abdollahpour-Alitappeh M, Nobre MAL, Borhani F (2019) Nickel-doped cerium oxide nanoparticles: green synthesis using stevia and protective effect against harmful ultraviolet rays. Molecules. https://doi.org/10.3390/molecules24244424

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the FIC block grant UBD/RSCH/1.4/FICBF(b)/2021/035 received from Universiti Brunei Darussalam, Brunei Darussalam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M., Matussin, S.N. & Rahman, A. Recent progress of phytogenic synthesis of ZnO, SnO2, and CeO2 nanomaterials. Bioprocess Biosyst Eng 45, 619–645 (2022). https://doi.org/10.1007/s00449-022-02713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02713-z

Keywords

Navigation