Skip to main content

Advertisement

Log in

Enhancing microbial fuel cell performance using anode modified with Fe3O4 nanoparticles

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Low electricity generation efficiency is one of the key issues that must be addressed for the practical application of microbial fuel cells (MFCs). Modification of microbial electrode materials is an effective method to enhance electron transfer. In this study, magnetite (Fe3O4) nanoparticles synthesized by co-precipitation were added to anode chambers in different doses to explore its effect on the performance of MFCs. The maximum power density of the MFCs doped with 4.5 g/L Fe3O4 (391.11 ± 9.4 mW/m2) was significantly increased compared to that of the undoped MFCs (255.15 ± 24.8 mW/m2). The COD removal efficiency of the MFCs increased from 85.8 ± 2.8% to 95.0 ± 2.1%. Electrochemical impedance spectroscopy and cyclic voltammetry tests revealed that the addition of Fe3O4 nanoparticles enhanced the biocatalytic activity of the anode. High-throughput sequencing results indicated that 4.5 g/L Fe3O4 modified anodes enriched the exoelectrogen Geobacter (31.5%), while control MFCs had less Geobacter (17.4%). Magnetite is widely distributed worldwide, which provides an inexpensive means to improve the electrochemical performance of MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang C, Yang HQ, Wu DJ (2019) Study on the reuse of anaerobic digestion effluent in lactic acid production. J Clean Prod 239:118028

    Article  CAS  Google Scholar 

  2. Meng F, Peng M, Wang X, Zhang G (2022) Lactic acid wastewater treatment by photosynthetic bacteria and simultaneous production of protein and pigments. Environ Technol 43(2):163–170

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Vazquez H, Jefferson B, Judd SJ (2004) Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. J Chem Technol Biotechnol 79:1043–1049

    Article  CAS  Google Scholar 

  4. Song T, Li S, Yin Z, Bao M, Lu J, Li Y (2021) Hydrolyzed polyacrylamide-containing wastewater treatment using ozone reactor-upflow anaerobic sludge blanket reactor-aerobic biofilm reactor multistage treatment system. Environ Pollut 269:116111

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  PubMed  CAS  Google Scholar 

  6. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaushik A, Singh A (2020) Metal removal and recovery using bioelectrochemical technology: The major determinants and opportunities for synchronic wastewater treatment and energy production. J Environ Manag 270:110826

    Article  CAS  Google Scholar 

  8. Yaqoob AA, Ibrahim MNM, Umar K, Parveen T, Ahmad A, Lokhat D, Setapar SHM (2021) A glimpse into the microbial fuel cells for wastewater treatment with energy generation. Desalin Water Treat 214:379–389

    Article  CAS  Google Scholar 

  9. Yaqoob AA, Ibrahim MNM, Yaakop AS, Umar K, Ahmad A (2021) Modified graphene oxide anode: A bioinspired waste material for bioremediation of Pb2+ with energy generation through microbial fuel cells. Chem Eng J 417:128052

    Article  CAS  Google Scholar 

  10. Xia C, Zhang D, Zhu Y, Guo Y (2017) Models for microbial fuel cells: a critical review. J Eng 13:1269–1274

    Article  Google Scholar 

  11. Yaqoob AA, Ibrahim MNM, Guerrero-Barajas C (2021) Modern trend of anodes in microbial fuel cells (MFCs): an overview. Environ Technol Innov 23:101579

    Article  CAS  Google Scholar 

  12. Yaqoob AA, Ibrahim MNM, Umar K (2021) Electrode material as anode for improving the electrochemical performance of microbial fuel cells. In: Energy storage battery systems-fundamentals and applications. IntechOpen

  13. Yaqoob AA, Khatoon A, Setapar SHM, Umar K, Parveen T, Ibrahim MNM, Ahmad A, Rafatullah M (2020) Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation. Catalysts 10:819

    Article  CAS  Google Scholar 

  14. Flimban S, Ismail I, Kim T, Oh SE (2019) Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability. Energies 12:3390

    Article  CAS  Google Scholar 

  15. Yaqoob AA, Ibrahim MNM, Rodriguez-Couto S (2020) Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): an overview. Biochem Eng J 164:107779

    Article  CAS  Google Scholar 

  16. Yaqoob AA, Ibrahim MNM, Rafatullah M, Chua YS, Ahmad A, Umar K (2020) Recent advances in anodes for microbial fuel cells: an overview. Materials 13:2078

    Article  CAS  PubMed Central  Google Scholar 

  17. Ren H, Pyo S, Lee J-I, Park T-J, Gittleson FS, Leung FCC, Kim J, Taylor AD, Lee H-S, Chae J (2015) A high power density miniaturized microbial fuel cell having carbon nanotube anodes. J Power Sources 273:823–830

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang X, Li H, Peng L, Qin Y, Lin X, Zheng L, Li C (2021) Porous α-Fe2O3 nanofiber combined with carbon nanotube as anode to enhance the bioelectricity generation for microbial fuel cell. Electrochim Acta 391:138984

    Article  CAS  Google Scholar 

  19. Bensalah F, Pézard J, Haddour N, Erouel M, Buret F, Khirouni K (2021) Carbon nano-fiber/PDMS composite used as corrosion-resistant coating for copper anodes in microbial fuel cells. Nanomaterials 11:3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pu K-B, Ma Q, Cai W-F, Chen Q-Y, Wang Y-H, Li F-J (2018) Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J 132:255–261

    Article  CAS  Google Scholar 

  21. Kato S, Hashimoto K, Watanabe K (2013) Iron-oxide minerals affect extracellular electron-transfer paths of Geobacter spp. Microbes Environ 28:141–148

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu Q, Liu B, Li W, Zhao X, Zuo W, Xing D (2017) Impact of ferrous iron on microbial community of the biofilm in microbial fuel cells. Front Microbiol 8:920

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu D, Xing D, Lu L, Wei M, Liu B, Ren N (2013) Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresour Technol 135:630–634

    Article  CAS  PubMed  Google Scholar 

  24. Li RZ, Ren X, Zhang F, Du C, Liu JP (2012) Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem Commun 48:5010–5012

    Article  CAS  Google Scholar 

  25. Peng X, Yu H, Ai L, Li N, Wang XJBT (2013) Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour Technol 144:689–692

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Cao Y, Zhao Z, Zhang Y (2019) Regulating secretion of extracellular polymeric substances through dosing magnetite and zerovalent iron nanoparticles to affect anaerobic digestion mode. ACS Sustain Chem Eng 7(10):9655–9662

    Article  CAS  Google Scholar 

  27. Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ Microbiol 17(5):1533–1547

    Article  PubMed  CAS  Google Scholar 

  28. Yang Z, Guo R, Shi X, Wang C, Wang L, Dai M (2016) Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane. RSC Adv 6:25662–25668

    Article  CAS  Google Scholar 

  29. Yu B, Li YH, Feng L (2019) Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe3O4 modified anode. J Hazard Mater 377:70–77

    Article  CAS  PubMed  Google Scholar 

  30. Matsumoto A, Nagoya M, Tsuchiya M, Suga K, Inohana Y, Hirose A, Yamada S, Hirano S, Ito Y, Tanaka S (2020) Enhanced electricity generation in rice paddy-field microbial fuel cells supplemented with iron powders. Bioelectrochemistry 136:107625

    Article  CAS  PubMed  Google Scholar 

  31. Ma J, Shi N, Jia J (2020) Fe3O4 nanospheres decorated reduced graphene oxide as anode to promote extracellular electron transfer efficiency and power density in microbial fuel cells. Electrochim Acta 362:137126

    Article  CAS  Google Scholar 

  32. Liu PP, Liang P, Jiang Y, Hao W, Miao B, Wang DL, Huang X (2018) Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell. Appl Energy 216:382–388

    Article  CAS  Google Scholar 

  33. Zhu N, Ji HN, Yu P, Niu JQ, Farooq MU, Akram MW, Udego IO, Li HD, Niu XB (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:27

    Article  CAS  Google Scholar 

  34. Ai C, Yan Z, Hou S, Zheng X, Zeng W (2020) Effective treatment of acid mine drainage with microbial fuel cells: an emphasis on typical energy substrates. Minerals 10:443

    Article  CAS  Google Scholar 

  35. Shehab N, Li D (2013) Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl Microbiol Biotechnol 97:9885–9895

    Article  CAS  PubMed  Google Scholar 

  36. Cheng S-A, Wang B-S, Wang Y-H (2013) Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol 147:332–337

    Article  CAS  PubMed  Google Scholar 

  37. Amanze C, Zheng X, Man M, Yu Z, Ai C, Wu X, Xiao S, Xia M, Yu R, Wu X, Shen L, Liu Y, Li J, Dolgor E, Zeng W (2022) Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environ Res 205:112467

    Article  CAS  PubMed  Google Scholar 

  38. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  39. Novoselova LY (2020) Nanoscale magnetite: new synthesis approach, structure and properties. Appl Surf Sci 539:148275

    Article  CAS  Google Scholar 

  40. Chang C-N, Cheng H-B, Chao AC (2004) Applying the nernst equation to simulate redox potential variations for biological nitrification and denitrification processes. Environ Sci Technol 38:1807–1812

    Article  CAS  PubMed  Google Scholar 

  41. Yang W, Wang X, Son M, Logan BE (2020) Simultaneously enhancing power density and coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells. J Power Sources 465:228264

    Article  CAS  Google Scholar 

  42. Xu HD, Quan XC, Xiao ZT, Chen L (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547

    Article  CAS  Google Scholar 

  43. Fu L, Wang H, Huang Q, Song T-s, Xie J (2020) Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell. Bioprocess Biosyst Eng 43:373–381

    Article  CAS  PubMed  Google Scholar 

  44. Miran F, Mumtaz MW, Mukhtar H, Akram S (2021) Iron oxide–modified carbon electrode and sulfate-reducing bacteria for simultaneous enhanced electricity generation and tannery wastewater treatment. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.747434

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu H, Zhang Y, Zhou Y, Chen Z, Lichtfouse E (2020) Self-provided microbial electricity enhanced wastewater treatment using carbon felt anode coated with amino-functionalized Fe3O4. J Water Process Eng 38:101649

    Article  Google Scholar 

  46. Ren YP, Lv Y, Wang Y, Li XF (2020) Effect of heterotrophic anodic denitrification on anolyte pH control and bioelectricity generation enhancement of bufferless microbial fuel cells. Chemosphere 257:127251

    Article  CAS  PubMed  Google Scholar 

  47. Lu Z, Chang D, Ma J, Huang G, Ca IL, Zhang L (2015) Behavior of metal ions in bioelectrochemical systems: a review. J Power Sources 275:243–260

    Article  CAS  Google Scholar 

  48. He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2:215–219

    Article  CAS  Google Scholar 

  49. Yaqoob AA, Ibrahim MNM, Umar K (2021) Biomass-derived composite anode electrode: synthesis, characterizations, and application in microbial fuel cells (MFCs). J Environ Chem Eng 9:106111

    Article  CAS  Google Scholar 

  50. Yaqoob AA, Ibrahim MNM, Yaakop AS (2021) Application of oil palm lignocellulosic derived material as an efficient anode to boost the toxic metal remediation trend and energy generation through microbial fuel cells. J Clean Prod 314:128062

    Article  CAS  Google Scholar 

  51. Li C, Zhou K, He H, Cao J, Zhou S (2020) Adding zero-valent iron to enhance electricity generation during MFC start-up. Int J Environ Res Public Health 17:806

    Article  CAS  PubMed Central  Google Scholar 

  52. Richter H, Nevin KP, Jia HF, Lowy DA, Lovley DR, Tender LM (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2:506–516

    Article  CAS  Google Scholar 

  53. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662

    Article  CAS  PubMed  Google Scholar 

  54. Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2015) Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol 17:648–655

    Article  CAS  PubMed  Google Scholar 

  55. Cui Y, Chen X, Pan Z, Wang Y, Xu Q, Bai J, Jia H, Zhou J, Yong X, Wu X (2020) Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell. Bioresour Technol 318:124095

    Article  CAS  PubMed  Google Scholar 

  56. Gong W, Xie B, Deng S, Fan Y, Tang X, Liang H (2019) Enhancement of anaerobic digestion effluent treatment by microalgae immobilization: characterized by fluorescence excitation-emission matrix coupled with parallel factor analysis in the photobioreactor. Sci Total Environ 678:105–113

    Article  CAS  PubMed  Google Scholar 

  57. Luo J, Huang W, Zhang Q, Guo W, Wu Y, Feng Q, Fang F, Cao J, Su Y (2020) Effects of different hypochlorite types on the waste activated sludge fermentation from the perspectives of volatile fatty acids production, microbial community and activity, and characteristics of fermented sludge. Bioresour Technol 307:123227

    Article  CAS  PubMed  Google Scholar 

  58. Zhang C, Meckenstock RU, Weng S, Wei G, Dong X (2021) Marine sediments harbor diverse archaea and bacteria with the potential for anaerobic hydrocarbon degradation via fumarate addition. FEMS Microbiol Ecol 97(5):fiab045

    Article  CAS  PubMed  Google Scholar 

  59. Schilirò T, Tommasi T, Armato C, Hidalgo D, Traversi D, Bocchini S, Gilli G, Pirri CF (2016) The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials. Energy 106:277–284

    Article  CAS  Google Scholar 

  60. Li SS, Lei XQ, Qin LY, Sun XY, Wang LF, Zhao SW, Wang M, Chen SB (2021) Fe(III) reduction due to low pe plus pH contributes to reducing Cd transfer within a soil-rice system. J Hazard Mater 415:125668

    Article  CAS  PubMed  Google Scholar 

  61. Paitier A, Godain A, Lyon D, Haddour N, Vogel TM, Monier J-M (2017) Microbial fuel cell anodic microbial population dynamics during MFC start-up. Biosens Bioelectron 92:357–363

    Article  CAS  PubMed  Google Scholar 

  62. Logan BE, Rossi R, Aa R, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17:307–319

    Article  CAS  PubMed  Google Scholar 

  63. Röling WFM (2014) The family Geobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39044-9_381

    Chapter  Google Scholar 

  64. Snoeyenbos-West OL, Nevin KP, Anderson RT, Lovley DR (2000) Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167

    Article  CAS  PubMed  Google Scholar 

  65. Xu Y-S, Zheng T, Yong X-Y, Zhai D-D, Si R-W, Li B, Yu Y-Y, Yong Y-C (2016) Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells. Bioresour Technol 211:542–547

    Article  CAS  PubMed  Google Scholar 

  66. Miyahara M, Sakamoto A, Kouzuma A, Watanabe K (2016) Poly iron sulfate flocculant as an effective additive for improving the performance of microbial fuel cells. Bioresour Technol 221:331–335

    Article  CAS  PubMed  Google Scholar 

  67. Wei L, Han H, Shen J (2013) Effects of temperature and ferrous sulfate concentrations on the performance of microbial fuel cell. Int J Hydrogen Energy 38:11110–11116

    Article  CAS  Google Scholar 

  68. Mohamed HO, Obaid M, Poo K-M, Ali Abdelkareem M, Talas SA, Fadali OA, Kim HY, Chae K-J (2018) Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem Eng J 349:800–807

    Article  CAS  Google Scholar 

  69. Xu X, Zhao Q, Wu M, Ding J, Zhang W (2017) Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresour Technol 225:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51934009, No. 52074353), National Key Research and Development Program of China (No. 2019YFC1803600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Zeng.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest, financially or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1412 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Hou, S., Amanze, C. et al. Enhancing microbial fuel cell performance using anode modified with Fe3O4 nanoparticles. Bioprocess Biosyst Eng 45, 877–890 (2022). https://doi.org/10.1007/s00449-022-02705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02705-z

Keywords

Navigation