Skip to main content

Advertisement

Log in

Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The relatively weak microbial adhesion is a bottleneck in improving the power generation performance of microbial fuel cell (MFC). Anode modification is a simple and effective method to solve this problem. A new type of β-cyclodextrin/polydopamine modified carbon felt anode was prepared, and the effects of β-cyclodextrin/polydopamine modified anode on the main performance indexes such as power density and chemical oxygen demand (COD) removal rate of MFC were evaluated. The maximum power density and the output electric energy during the test period of MFC using the modified anode were 102 mW/m2 and 84.96 J, which were 364% and 295.3% higher than those of MFC with conventional carbon felt anode, respectively; and the COD removal rate was 124.4% higher than that of MFC with unmodified anode. Modifying the anode with β-cyclodextrin–polyacyclic composite materials is an effective method to improve the overall performance of MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Ahmed S (2021) Advanced microbial fuel cell for waste water treatment-a review. Environ Sci Pollut R 28:5005–5019

    Article  CAS  Google Scholar 

  2. Moradian JM, Fang Z, Yong YC (2021) Recent advances on biomass-fueled microbial fuel cell. Bioresour Bioprocess 8:14. https://doi.org/10.1186/s40643-021-00365-7

    Article  Google Scholar 

  3. Tabassum N, Islam N, Ahmed S (2021) Progress in microbial fuel cells for sustainable management of industrial effluents. Process Biochem 106:20–41

    Article  CAS  Google Scholar 

  4. Chinnaraj G, Ponnaiah GP (2021) Sustainable electricity generation from continuous microbial fuel cells. Chem Eng Technol 44:884–891

    Article  CAS  Google Scholar 

  5. Singh S, Pophali A, Omar RA, Kumar R, Kumar P, Mondal DP, Pant D, Verma N (2021) A nickel oxide-decorated in situ grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells. Chem commun 57:879–882

    Article  CAS  Google Scholar 

  6. Pasupuleti SB, Srikanth S, Dominguez-Benetton X, Mohan SV, Pant D (2016) Dual gas diffusion cathode design for microbial fuel cell (MFC): optimizing the suitable mode of operation in terms of bioelectrochemical and bioelectro-kinetic evaluation. J Chem Technol Biotechnol 91:624–639

    Article  CAS  Google Scholar 

  7. Bhowmick GD, Dhar D, Ghangrekar MM, Banerjee R (2020) TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. Ionics 26:6195–6205

    Article  CAS  Google Scholar 

  8. Fan LP, Xu DD (2016) Effect of electrochemically modified anode on the performance of MFC. J Fuel Chem Tech 44:628–633

    CAS  Google Scholar 

  9. Pandey K, Gupta P, Verma N, Singh S (2021) A CeO2 sprinkled graphitic novel packed bed anode-based single-chamber MFC for the treatment of high organic-loaded industrial effluent in upflow continuous mode. J Mater Chem A 9:23106–23116

    Article  CAS  Google Scholar 

  10. Pophali A, Singh S, Verma N (2020) Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell. Int J Hydrogen Energ 45:25985–25995

    Article  CAS  Google Scholar 

  11. Fan LP, Xu DD, Li C, Xue S (2016) Molasses wastewater treatment by microbial fuel cell with MnO2-modified cathode. Pol J Environ Stud 25:2359–2356

    Article  CAS  Google Scholar 

  12. Fan LP, Zhang LL (2018) Enhancing the power generation and COD removal of microbial fuel cell with zrp-modified proton exchange membrane. Int J Electrochem Sci 13:2911–2920

    Article  CAS  Google Scholar 

  13. Fan LP, Zheng YJ, Miao XH (2016) Effects of catholyte and dissolved oxygen on microbial fuel cell performance. Jcecu 30:491–496

    CAS  Google Scholar 

  14. Leung D, Lim YS, Uma K, Pan GT, Lin JH, Chong S, Yang T (2020) Engineering S. oneidensis for performance improvement of microbial fuel cell-a mini review. Appl Biochem Biotech 193:1170–1186

    Article  CAS  Google Scholar 

  15. Do MH, Ngo HH, Guo WS, Liua Y, Chang SW, Nguyen DD, Nghiema LD, Ni BJ (2018) Challenges in the application of microbial fuel cells to wastewater treatment and energy production: a mini review. Sci Total Environ 639:910–920

    Article  CAS  PubMed  Google Scholar 

  16. Xia CS, Zhang DX, Pedrycz W, Zhu YM, Guo YX (2017) Models for microbial fuel cells: a critical review. J Power Sources 373:119–131

    Article  CAS  Google Scholar 

  17. Fan LP, Xi YB (2021) Effect of polypyrrole-Fe3O4 composite modified anode and its electrodeposition time on the performance of microbial fuel cells. Energies 14:2461. https://doi.org/10.3390/en14092461

    Article  CAS  Google Scholar 

  18. Aay A, Mnmi A, Gb B (2021) Modern trend of anodes in microbial fuel cells (MFCs): an overview. Environ Technol Innov 23:101579. https://doi.org/10.1016/j.eti.2021.101579

    Article  CAS  Google Scholar 

  19. Hindatu Y, Annuar M, Gumel AM (2017) Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sust Energ Rev 73:236–248

    Article  CAS  Google Scholar 

  20. Xue P, Jiang S, Li WL, Shi K, Ma L, Li P (2021) Bimetallic oxide MnFe2O4 modified carbon felt anode by drip coating: an effective approach enhancing power generation performance of microbial fuel cell. Bioprocess Biosyst Eng 44:1119–1130

    Article  CAS  PubMed  Google Scholar 

  21. Xu H, Wang L, Wen Q, Chen Y, Tang Z (2019) A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell. Bioelectrochemistry. https://doi.org/10.1016/j.bioelechem.2019.05.008

    Article  PubMed  Google Scholar 

  22. Sonawane JM, Yadav A, Ghosh PC, Adeloju SB (2016) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron 90:558–576

    Article  PubMed  CAS  Google Scholar 

  23. Christwardana M, Frattini D, Duarte K, Accardo G, Kwon Y (2019) Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl Energy 238:239–248

    Article  CAS  Google Scholar 

  24. Chen L, Li Y, Yao J, Wu G, Yang B, Lei L, Hon Y, Li Z (2019) Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells. J Power Sources 412:86–92

    Article  CAS  Google Scholar 

  25. Bian B, Dai S, Cai X, Hu M, Yang J (2017) 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 44:174–180

    Article  CAS  Google Scholar 

  26. Yang L, Deng W, Zhang Y, Tan Y, Ma M, Xie Q (2017) Boosting current generation in microbial fuel cells by an order of magnitude by coating an ionic liquid polymer on carbon anodes. Biosens Bioelectron 91:644–649

    Article  CAS  PubMed  Google Scholar 

  27. Jiang H, Yang L, Deng W, Tan Y, Xie Q (2017) Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell. J Power Sources 363:27–33

    Article  CAS  Google Scholar 

  28. Atta NF, Galal A, El-Said DM (2019) Novel design of a layered electrochemical dopamine sensor in real samples based on gold nanoparticles/ β-cyclodextrin/nafion-modified gold electrode. ACS Omega 4:17947–17955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chekin F, Mishyn V, Barras A, Lyskawa J, Ye R, Melinte S, Woisel P, Boukherroub R, Szunerits S (2019) Dopamine-functionalized cyclodextrins: modification of reduced graphene oxide based electrodes and sensing of folic acid in human serum. Anal Bioanal Chem 411:5149–5157

    Article  CAS  PubMed  Google Scholar 

  30. Mirzaei B, Zarrabi A, Noorbakhsh A, Aminide A, Makvandi P (2021) A reduced graphene oxide-b- cyclodextrin nanocomposite-based electrode for electrochemical detection of curcumin. RSC Adv 11:7862–7872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Achkar TE, Moufawad T, Ruellan S, Greige-Gerges H, Fourmentin S (2020) Cyclodextrins: from solute to solvent. Chem Commun 56:3385–3388

    Article  Google Scholar 

  32. Tian B, Liu JY (2020) The classification and application of cyclodextrin polymers: a review. New J Chem 44:9137–9148

    Article  CAS  Google Scholar 

  33. Malik NS, Ahmad M, Minhas MU (2017) Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE. https://doi.org/10.1371/journal.pone.0172727

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christian FC, Mehrdad YP, Claudio OA (2014) Inclusion and functionalization of polymers with cyclodextrins: current applications and future prospects. Molecules 19:14066–14079

    Article  CAS  Google Scholar 

  35. Zahraa H, Nathalie K, Lizette A, Sophie F, Abdelhamid E (2019) Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76

    Article  CAS  Google Scholar 

  36. Niu B, Hua T, Xu B (2020) Robust deposition of silver nanoparticles on paper assisted by polydopamine for green and flexible electrodes. ACS Sust Chem Eng 8:12842–12851

    Article  CAS  Google Scholar 

  37. Ryu JH, Messersmith PB, Lee H (2018) Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interface 10:7523–7540

    Article  CAS  Google Scholar 

  38. Milyaeva OY, Akent’ev AV, Bykov AG, Zerov AV, Isakov NA, Noskov BA (2020) Compression isotherms of polydopamine films. Colloid J 82:546–554

    Article  Google Scholar 

  39. Sabeti M, Ensafi AA, Rezaei B (2021) Polydopamine-modified MWCNTs-glassy carbon electrode, a selective electrochemical morphine sensor. Electroanalysis 33:1–11

    Article  CAS  Google Scholar 

  40. Muthoka RM, Roy S, Kim HC, Yoon H, Zhai L, Kim J (2021) Polydopamine–cellulose nanofiber composite for flexible electrode material. Smart Mater Struct 30:035025. https://doi.org/10.1088/1361-665X/abe184

    Article  CAS  Google Scholar 

  41. Wang YX, Zeng JM, Zhou ZH, Shen GC, Tang T, Sagar RUR, Qi XP (2022) Growth of a high-performance WO3 nanofilm directly on a polydopamine-modified ITO electrode for electrochromism and power storage applications. Appl Surf Sci 573:151603. https://doi.org/10.1016/j.apsusc.2021.151603

    Article  CAS  Google Scholar 

  42. Li Y, Liu J, Chen X, Yuan X, Li N, He W, Feng Y (2020) Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell. Chem Eng J 387:123408. https://doi.org/10.1016/j.cej.2019.123408

    Article  CAS  Google Scholar 

  43. Gorovtsov AV, Minkina TM, Mandzhieva SS, Perelomov LV, Yao J (2019) The mechanisms of biochar interactions with microorganisms in soil. Environ Geochem Health 42:2495–2518

    Article  PubMed  CAS  Google Scholar 

  44. Polyak YM, Sukcharevich VI (2019) Allelopathic interactions between plants and microorganisms in soil ecosystems. Biol Bull 9:562–574

    Article  Google Scholar 

  45. Zhao Y, Ma Y, Li T, Dong ZS, Wang YX (2018) Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv 8:2059–2064

    Article  CAS  Google Scholar 

  46. Chang SH, Huang BY, Wan TH, Chen JZ, Chen BY (2017) Surface modification of carbon cloth anodes for microbial fuel cells using atmospheric-pressure plasma jet processed reduced graphene oxides. RSC Adv 7:56433–56439

    Article  CAS  Google Scholar 

  47. Fan LP, Shi JY, Xi YB (2020) PVDF-modified Nafion membrane for improved performance of MFC. Membranes 10:185. https://doi.org/10.3390/membranes10080185

    Article  CAS  PubMed Central  Google Scholar 

  48. Islam MA, Karim A, Woon CW, Ethiraj B, Cheng CK, Yousuf A, Khan MMR (2017) Augmentation of air cathode microbial fuel cell performance using wild type Klebsiella variicola. RSC Adv 7:4798–4805

    Article  CAS  Google Scholar 

  49. Singh S, Bairagi PK, Verma N (2018) Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim Acta 264:119–127

    Article  CAS  Google Scholar 

  50. Wu CH, Liu SH, Chu HL, Li YC, Lin CW (2017) Feasibility study of electricity generation and organics removal for a molasses wastewater by a waterfall-type microbial fuel cell. J Taiwan Inst Chem Eng 78:150–156

    Article  CAS  Google Scholar 

  51. Lee YY, Kim TG, Cho KS (2016) Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater. J Environ Sci Health A 15:1–8

    Google Scholar 

  52. Fan LP, Shi JY, Gao T (2020) Comparative study on the effects of three membrane modification methods on the performance of microbial fuel cell. Energies 13:1383. https://doi.org/10.3390/en13061383

    Article  CAS  Google Scholar 

  53. Mashkour M, Rahimnejad M (2015) Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Res J 8:296–300

    Article  Google Scholar 

  54. Pu KB, Gao JY, Cai WF, Chen QY, Guo K, Huang Y, Gao SH, Wang YH (2022) A new modification method of metal substrates via candle soot to prepare effective anodes in air-cathode microbial fuel cells. J Chem Technol Biotechnol 97:189–198

    Article  CAS  Google Scholar 

  55. Bao Yu, Feng L, He Y, Yang L, Xun Y (2021) Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J Hazard Mater 401:123394. https://doi.org/10.1016/j.jhazmat.2020.123394

    Article  CAS  Google Scholar 

  56. Hidalgo D, Tommasi T, Sergio B, Chiolerio A, Chiodoni A, Mazzarino I, Ruggeri B (2016) Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy 99:193–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese-North Macedonia Scientific and Technological Cooperation Project of Ministry of Science and Technology of the People’s Republic of China (Grant [2019] 22: 6-8), and the Intercollegiate Cooperation Project of Colleges and Universities in Liaoning Province (Grant [2020] 28).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liping Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Xi, Y. Effect of β-cyclodextrin/polydopamine composite modified anode on the performance of microbial fuel cell. Bioprocess Biosyst Eng 45, 855–864 (2022). https://doi.org/10.1007/s00449-022-02703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02703-1

Keywords

Navigation