Skip to main content
Log in

Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, a series of proline ionic liquids with different lengths of hydrophobic alkyl on the side chain were used to modify the Candida Antarctic lipase B (CALB). The catalytic activity, thermal stability and tolerance to methanol and DMSO of the modified enzyme were all improved simultaneously. The optimum temperature changed from 55 to 60 ℃. The hydrophobicity and anion type of the modifier have important influence on the catalytic performance of CALB. CALB modified by [ProC12][H2PO4] has a better effect. Under the optimal conditions, its hydrolysis activity was 3.0 times than that of the native enzyme, the catalytic efficiency Kcat/Km improved 2.8 times in aqueous phase, and the tolerance to organic solvent with strong polarity (50% methanol 2 h) was increased by 6.8 times. Fluorescence spectra and circular dichroism (CD) spectroscopy showed that the introduction of ionic liquids changed the microenvironment near the fluorophores of the enzyme protein, the α-helix decreased and β-sheet increased in the secondary structure of the modified enzymes. The root mean square deviation (RMSD), residue root mean square fluctuation (RMSF), radius of gyration (Rg), and solution accessible surface area (SASA) of [ProC2][Br]-CALB, [ProC12][Br]-CALB and native CALB were obtained for comparison by molecular dynamics simulation. The results of dynamics simulation were in good agreement with enzymology experiment. The introduction of ionic liquids can keep CALB in a better active conformation, and proline ionic liquids with long hydrophobic chains can significantly improve the surface hydrophobicity and overall rigidity of CALB. This research offers a new idea for rapid screening of efficient modifiers and provision of enzymes with high stability and activity for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sheldon RA, Pereira PC (2017) Biocatalysis engineering: the big picture. Chem Soc Rev 46:2678–2691

    Article  CAS  PubMed  Google Scholar 

  2. Choudhury P (2015) Industrial application of lipase: a review. BioPharm 1:41–47

    Google Scholar 

  3. Yang WK, Zhu LJ, Cui YC, Wang HG, Wang YW, Yuan L, Chen H (2016) Improvement of site-directed protein-polymer conjugates: high bioactivity and stability using a soft chain-transfer agent. ACS Appl Mater Interfaces 8:15967–15974

    Article  CAS  PubMed  Google Scholar 

  4. Diaz-Rodriguez A, Davis BG (2011) Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol 15:211–219

    Article  CAS  PubMed  Google Scholar 

  5. Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H (2021) Recent advances in biocatalysis with chemical modification and expanded amino acid alphabet. Chem Rev 121:6173–6245

    Article  CAS  PubMed  Google Scholar 

  6. Basle E, Joubert N, Pucheault M (2010) Protein chemical modification on endogenous amino acids. Chem Biol 17:213–227

    Article  CAS  PubMed  Google Scholar 

  7. Nwagu TN, Aoyagi H, Okolo B, Moneke A, Yoshida S (2020) Citraconylation and maleylation on the catalytic and thermodynamic properties of raw starch saccharifying amylase from Aspergillus carbonarius. Heliyon 6:e04351

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jayawardena MB, Yee LH, Poljak A, Cavicchioli R, Kjelleberg SJ (2017) Siddiqui KS Enhancement of lipase stability and productivity through chemical modification and its application to latex-based polymer emulsions. Process Biochem 57:131–140

    Article  CAS  Google Scholar 

  9. Bekhouche M, Blum LJ, Doumèche B (2011) Ionic liquid-inspired cations covalently bound to formate dehydrogenase improve its stability and activity in ionic liquids. ChemCatChem 3:875–882

    Article  CAS  Google Scholar 

  10. Brogan APS, Bui-Le L, Hallett JP (2018) Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nat Chem 10:859–865

    Article  CAS  PubMed  Google Scholar 

  11. Li XJ, Zhang C, Li S, Huang H, Hu Y (2015) Improving catalytic performance of Candida rugosa lipase by chemical modification with polyethylene glycol functional ionic liquids. Ind Eng Chem Res 54:8072–8079

    Article  CAS  Google Scholar 

  12. Xu C, Yin XH, Zhang C, Chen HY, Huang H, Hu Y (2018) Improving catalytic performance of Burkholderiacepacia lipase by chemical modification with functional ionic liquids. Chem Res Chin Univ 34:279–284

    Article  CAS  Google Scholar 

  13. Jia R, Hu Y, Liu L, Jiang L, Huang H (2013) Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids. Org Biomol Chem 11:7192–7198

    Article  CAS  PubMed  Google Scholar 

  14. Jia R, Hu Y, Liu L, Jiang L, Zou B, Huang H (2013) Enhancing catalytic performance of porcine pancreatic lipase by covalent modification using functional ionic liquids. ACS Catal 3:1976–1983

    Article  CAS  Google Scholar 

  15. Lv JP, Wei DQ, Wang YH, Xu Q (2016) Molecular dynamics method on thermostability of cold active Lipase 5. J At Mol Phys 33:128–134

    Google Scholar 

  16. Xie Y, An J, Yang GY, Wu G, Zhang Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289:7994–8006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Evran S, Telefoncu A (2007) Modification of prcine pancreatic lipase with z-proline. Prep Biochem Biotechnol 35:191–201

    Article  Google Scholar 

  18. Xu C, Suo HB, Xue Y, Qin J, Chen HY, Hu Y (2021) Experimental and theoretical evidence of enhanced catalytic performance of lipase B from Candida antarctica acquired by the chemical modification with amino acid ionic liquids. Mol Catal 501:111135

    Google Scholar 

  19. Noro J, Castro TG, Cavaco-Paulo A, Silva C (2020) Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from Thermomyces lanuginosus. Catal Sci Technol 10:5913–5924

    Article  CAS  Google Scholar 

  20. Zhang L, Zhang HB, Luo HD, Zhou XH, Cheng GZ (2011) Novel chiral ionic liquid (CIL) assisted selectivity enhancement to (l)-proline catalyzed asymmetric aldol reactions. J Braz Chem Soc 9:1736–1741

    Article  Google Scholar 

  21. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Article  CAS  Google Scholar 

  22. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid—sciencedirect. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  23. Snydr SL, Sobocinski PZ (1975) An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 1:284–288

    Article  Google Scholar 

  24. Kordel M, Hofmann B, Schomburg D, Schmid RD (2019) Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J Bacteriol 173:4836–4841

    Article  Google Scholar 

  25. Wu KJ, Odom RW (1998) MALDI MS is a powerful tool for determining molecular-weight distributions and structures of synthetic organic polymers. Anal Chem 70:456–461

    Article  Google Scholar 

  26. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171

    Article  CAS  PubMed  Google Scholar 

  27. Uppenberg J, Patkar S, Bergfors T, Jones TA (2011) Crystallization and preliminary X-ray studies of lipase B from Candida antarctica. J Mol Biol 235:790–792

    Article  Google Scholar 

  28. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  29. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  30. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  31. Ryckaert JP, Ciccotti G (1997) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  32. Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Olubajo O, Song ZY, Sims AL, Person TE, Lawal RA, Holley LA (2006) Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorg Chem 34:15–25

    Article  CAS  PubMed  Google Scholar 

  34. Siddiqui KS, Cavicchioli R (2005) Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 9:471–476

    Article  CAS  PubMed  Google Scholar 

  35. Forde J, Vakurovb A, Gibsonb TD, Millnerb P, Whelehana M, Marisona IW, O Fágáina C (2010) Chemical modificationand immobilisation of lipase B from Candida antarcticaonto mesoporous silicates. J Mol Catal B-Enzym 66:203–209

    Article  CAS  Google Scholar 

  36. Goihberg E, Dym O, Tel-Or S, Levin I, Peretz M, Burstein Y (2007) A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase. Proteins 66:196–204

    Article  CAS  PubMed  Google Scholar 

  37. Kajiwara S, Komatsu K, Yamada R, Matsumoto T, Yasuda M, Ogino H (2019) Modification of lipase from Candida cylindracea with dextran using theborane-pyridine complex to improve organic solvent stability. J Biotechnol 296:1–6

    Article  CAS  PubMed  Google Scholar 

  38. Pogorevc M, Stecher H, Faber K (2002) A caveat for the use of log P values for the assessment of the biocompatibility of organic solvents. Biotech Lett 24:857–860

    Article  CAS  Google Scholar 

  39. Veenstra TD, Johnson KL, Tomlinson AJ, Kumar R, Naylor S (1998) Correlation of fluorescence and circular dichroism spectroscopy with electrospray ionization mass spectrometry in the determination of tertiary conformational changes in calcium-binding proteins. Rapid Commun Mass Spectrom 12:613–619

    Article  CAS  Google Scholar 

  40. Hassani L (2012) The effect of chemical modification with pyromellitic anhydride on structure, function, and thermal stability of horseradish peroxidase. Appl Biochem Biotechnol 167:489–497

    Article  CAS  PubMed  Google Scholar 

  41. Joondan N, Moosun SB, Caumul P, Sunassee SN, Venter GA, Jhaumeer-Laulloo S (2018) Effect of chain length on the interactions of sodium N-alkyl prolinates with bovine serum albumin: a spectroscopic investigation and molecular docking simulations. Colloid Polym Sci 296:367–378

    Article  CAS  Google Scholar 

  42. Pan S, Liu X, Xie YD, Yi YY, Li C, Yan YJ, Liu Y (2010) Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media. Bioresour Technol 101:9822–9824

    Article  CAS  PubMed  Google Scholar 

  43. Miletic N, Loos K (2009) Over-Stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides. Aust J Chem 62:799–805

    Article  CAS  Google Scholar 

  44. Wolynes P, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1920

    Article  CAS  PubMed  Google Scholar 

  45. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628

    Article  CAS  Google Scholar 

  46. Longo MA, Combes D (1997) Influence of surface hydrophilic/hydrophobic balance on enzyme properties. J Biotechnol 58:21–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China. (22178174, 21676143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 815 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xg., Xue, Y., Lu, Zp. et al. Chemical modification for improving catalytic performance of lipase B from Candida antarctica with hydrophobic proline ionic liquid. Bioprocess Biosyst Eng 45, 749–759 (2022). https://doi.org/10.1007/s00449-022-02696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02696-x

Keywords

Navigation