Skip to main content
Log in

Dynamic modeling of a full-scale membrane bioreactor performance for landfill leachate treatment

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Leachate treatment is crucial in landfill management. As landfill ages, inert constituents and ammonia nitrogen concentration in leachate increases, which results in a decrease in biological treatability. In this study, a full-scale MBR treating leachate was dynamically modeled using ASM1. The investigated landfill has been serving for more than 25 years; thus, a decrease in biodegradable organic content and an increase in nitrogen content of the leachate is expected in the years ahead. The calibrated model predicted MLSS, effluent COD, and effluent TN concentrations with high accuracy. Following the calibration study, it was found that soluble inert COD and soluble inert organic nitrogen fractions were the primary reasons of high COD and TKN concentrations in the effluent, respectively. The validated model of the full-scale MBR system treating leachate can be a useful tool to understand the limitations of the system. Soluble inert constituents of the leachate that pass through the membrane necessiate additional treatment processes for discharge into surface water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kaza S, Yao L, Bhada-Tata P, van Woerden F (2018) What a waste 2.0. World Bank Group, Washington, DC

    Google Scholar 

  2. Rogoff MJ, Screve F (2011) Waste-to-energy, 2nd edn. William Andrew Publishing, New York. https://doi.org/10.1016/B978-1-4377-7871-7.10001-2

    Book  Google Scholar 

  3. Schiopu A, Gavrilescu M (2010) Options for the treatment and management of municipal landfill leachate: common and specific issues. Clean: Soil, Air, Water 38:1101–1110. https://doi.org/10.1002/clen.200900184

    Article  CAS  Google Scholar 

  4. Salem Z, Hamouri K, Djemaa R, Allia K (2008) Evaluation of landfill leachate pollution and treatment. Desalination 220(1–3):108–114. https://doi.org/10.1016/j.desal.2007.01.026

    Article  CAS  Google Scholar 

  5. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077

    Article  CAS  PubMed  Google Scholar 

  6. Bolyard SC, Reinhart DR (2016) Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manage 55:22–30. https://doi.org/10.1016/j.wasman.2016.01.024

    Article  CAS  Google Scholar 

  7. Zhao RZ, Gupta A, Novak JT, Goldsmith CD (2017) Evolution of nitrogen species in landfill leachates under various stabilization states. Waste Manage 69:225–231. https://doi.org/10.1016/j.wasman.2017.07.041

    Article  CAS  Google Scholar 

  8. Dereli RK, Clifford E, Casey E (2020) Co-treatment of leachate in municipal wastewater treatment plants: critical issues and emerging technologies. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1745014

    Article  Google Scholar 

  9. Kurniawan TA, Lo W, Chan GYS (2006) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater B129:80–100. https://doi.org/10.1016/j.jhazmat.2005.08.010

    Article  CAS  Google Scholar 

  10. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2006) Landfill leachate treatment methods: a review. Environ Chem Lett 4:51–61. https://doi.org/10.1007/s10311-005-0016-z

    Article  CAS  Google Scholar 

  11. Galleguillos M, Keffala C, Vasel JL (2011) Simulation of a membrane bioreactor pilot treating old landfill leachates with activated sludge model No. 1 and No. 3. Environ Technol 32(16):1955–1965. https://doi.org/10.1080/09593330.2011.561878

    Article  CAS  Google Scholar 

  12. Ahmed FN, Lan CQ (2012) Treatment of landfill leachate using membrane bioreactors: a review. Desalination 287:41–54. https://doi.org/10.1016/j.desal.2011.12.012

    Article  CAS  Google Scholar 

  13. Henze M, Gujer W, Mino T, van Loosedrecht M (2000) Activated Sludge Models ASM1, ASM1, ASM2, ASM2d and ASM3. IWA Publishing, London. https://doi.org/10.2166/9781780402369

    Book  Google Scholar 

  14. van Loosdrecht MCM, Lopez-Vazquez CM, Meijer SCF, Hooijmans CM, Brdjanovic D (2015) Twenty-five years of ASM1: past, present and future of wastewater treatment modelling. J Hydroinf 17(5):697–718. https://doi.org/10.2166/hydro.2015.006

    Article  Google Scholar 

  15. Tamrat M, Costa C, Márquez MC (2012) Biological treatment of leachate from solid wastes: kinetic study and simulation. Biochem Eng J 66:46–51. https://doi.org/10.1016/j.bej.2012.04.012

    Article  CAS  Google Scholar 

  16. Hoang VY, Jupsin H, Le VC, Vasel J-L (2012) Modeling of partial nitrification and denitrification in an SBR for leachate treatment without carbon addition. J Mat Cycles Waste Manage 14(1):3–13. https://doi.org/10.1007/s10163-011-0033-x

    Article  CAS  Google Scholar 

  17. Costa C, Dominguez J, Autrán B, Márquez MC (2018) Dynamic modeling of biological treatment of leachates from solid wastes. Environ Model Assess 23:165–173. https://doi.org/10.1007/s10666-018-9592-8

    Article  Google Scholar 

  18. Batstone DJ, Keller J (2003) Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Sci Technol 47(12):199–206. https://doi.org/10.2166/wst.2003.0647

    Article  CAS  PubMed  Google Scholar 

  19. Dereli RK (2019) Modeling long-term performance of full-scale anaerobic expanded granular sludge bed reactor treating confectionery industry wastewater. Environ Sci Pollut Res 26:25037–25045. https://doi.org/10.1007/s11356-019-05739-1

    Article  CAS  Google Scholar 

  20. Baig S, Coulomb I, Courant P, Liechti P (1999) Treatment of landfill leachates: Lapeyrouse and Satrod case studies. Ozone Sci Eng 21:1–22. https://doi.org/10.1080/01919519908547255

    Article  CAS  Google Scholar 

  21. Amaral MCS, Moravia WG, Lange LC, Roberto MMZ, Magalhães NC, dos Santos TL (2015) Nanofiltration as post-treatment of MBR treating landfill leachate. Desalination and Water Treatment 53(6):1482–1491. https://doi.org/10.1080/19443994.2014.943061

    Article  CAS  Google Scholar 

  22. Bolyard SC, Reinhart DR (2017) Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality. Waste Manage 65:47–53. https://doi.org/10.1016/j.wasman.2017.03.025

    Article  CAS  Google Scholar 

  23. Aktaş Ö, Çeçen F (2001) Addition of activated carbon to batch activated sludge reactors in the treatment of landfill leachate and domestic wastewater. J Chem Technol Biotechnol 73:793–802. https://doi.org/10.1002/jctb.450

    Article  Google Scholar 

  24. Aziz SQ, Aziz HA, Yusoff MS (2011) Optimum process parameters for the treatment of landfill leachate using powdered activated carbon augmented sequencing batch reactor (SBR) technology. Sep Sci Technol 46:2348–2359. https://doi.org/10.1080/01496395.2011.595753

    Article  CAS  Google Scholar 

  25. Kurniawan TA, Lo W (2009) Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment. Water Res 43:4079–4091. https://doi.org/10.1016/j.watres.2009.06.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for support provided by ISTAC Inc.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazal Gulhan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulhan, H., Dereli, R.K., Ersahin, M.E. et al. Dynamic modeling of a full-scale membrane bioreactor performance for landfill leachate treatment. Bioprocess Biosyst Eng 45, 345–352 (2022). https://doi.org/10.1007/s00449-021-02664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02664-x

Keywords

Navigation