Skip to main content
Log in

External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m2, which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H+. This work provided a clear correlation between the electrochemical performance and biofilm structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Topcu Ş, Taşkan E (2021) Effect of the tetracycline antibiotics on performance and microbial community of microbial fuel cell. Bioproc Biosyst Eng 44:595–605. https://doi.org/10.1007/s00449-020-02473-8

    Article  CAS  Google Scholar 

  2. Mokwatlo SC, Brink HG, Nicol W (2020) Effect of shear on morphology, viability and metabolic activity of succinic acid-producing Actinobacillus succinogenes biofilms. Bioproc Biosyst Eng 43:1253–1263. https://doi.org/10.1007/s00449-020-02322-8

    Article  CAS  Google Scholar 

  3. Armato C, Ahmed D, Agostino V, Traversi D, Degan R, Tommasi T, Margaria V, Sacco A, Gilli G, Quaglio M, Saracco G, Schilirò T (2019) Anodic microbial community analysis of microbial fuel cells based on enriched inoculum from freshwater sediment. Bioproc Biosyst Eng 42:697–709. https://doi.org/10.1007/s00449-019-02074-0

    Article  CAS  Google Scholar 

  4. Sun D, Cheng S, Wang A, Li F, Logan BE, Cen K (2015) Temporal-Spatial changes in viabilities and electrochemical properties of anode biofilms. Environ Sci Technol 49:5227–5235. https://doi.org/10.1021/acs.est.5b00175

    Article  CAS  PubMed  Google Scholar 

  5. Sun D, Cheng S, Zhang F, Logan BE (2017) Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms. J Power Sources 356:566–571. https://doi.org/10.1016/j.jpowsour.2016.11.115

    Article  CAS  Google Scholar 

  6. Yang C, Chen M, Qian Y, Zhang L, Lu M, Xie X, Huang L, Huang W (2019) Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells. Sci China Mater 62:645–652. https://doi.org/10.1007/s40843-018-9368-y

    Article  CAS  Google Scholar 

  7. Du Q, Mu Q, Cheng T, Li N, Wang X (2018) Real-Time imaging revealed that exoelectrogens from wastewater are selected at the center of a gradient electric field. Environ Sci Technol 52:8939–8946. https://doi.org/10.1021/acs.est.8b01468

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Cheng S, Li C, Sun Y, Huang H (2019) Shear stress affects biofilm structure and consequently current generation of bioanode in microbial electrochemical systems (MESs). Front Microbiol. https://doi.org/10.3389/fmicb.2019.00398

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li T, Zhou L, Qian Y, Wan L, Du Q, Li N, Wang X (2017) Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells. Appl Energ 198:261–266. https://doi.org/10.1016/j.apenergy.2017.04.078

    Article  CAS  Google Scholar 

  10. Yang G, Huang L, Yu Z, Liu X, Chen S, Zeng J, Zhou S, Zhuang L (2019) Anode potentials regulate Geobacter biofilms: new insights from the composition and spatial structure of extracellular polymeric substances. Water Res 159:294–301. https://doi.org/10.1016/j.watres.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  11. Li T, Zhou Q, Zhou L, Yan Y, Liao C, Wan L, An J, Li N, Wang X (2020) Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Water Res 177:115776. https://doi.org/10.1016/j.watres.2020.115776

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Cheng S, Li P, Huang H, Cen K (2019) Sensitivity to oxygen in microbial electrochemical systems biofilms. iScience 13:163–172. https://doi.org/10.1016/j.isci.2019.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang L, Zhu X, Li J, Liao Q, Ye D (2011) Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. J Power Sources 196:6029–6035. https://doi.org/10.1016/j.jpowsour.2011.04.013

    Article  CAS  Google Scholar 

  14. Rossi R, Logan BE (2020) Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Bioresource Technol 318:123921. https://doi.org/10.1016/j.biortech.2020.123921

    Article  CAS  Google Scholar 

  15. Lyon DY, Buret F, Vogel TM, Monier J (2010) Is resistance futile? Changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry 78:2–7. https://doi.org/10.1016/j.bioelechem.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  16. Rismani-Yazdi H, Christy AD, Carver SM, Yu Z, Dehority BA, Tuovinen OH (2011) Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresource Technol 102:278–283. https://doi.org/10.1016/j.biortech.2010.05.012

    Article  CAS  Google Scholar 

  17. Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR (2009) Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energ Environ Sci 2:113–119. https://doi.org/10.1039/b816445b

    Article  CAS  Google Scholar 

  18. Renslow RS, Babauta JT, Majors PD, Beyenal H (2013) Diffusion in biofilms respiring on electrodes. Energy Environ Sci 6:595–607. https://doi.org/10.1039/c2ee23394k

    Article  CAS  PubMed  Google Scholar 

  19. Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen H, Ulstrup J, Zhao F (2017) Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Sci Adv 3:e1700623. https://doi.org/10.1126/sciadv.1700623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gurumurthy DM, Bharagava RN, Kumar A, Singh B, Ashfaq M, Saratale GD, Mulla SI (2019) EPS bound flavins driven mediated electron transfer in thermophilic Geobacillus sp. Microbiol Res 229:126324. https://doi.org/10.1016/j.micres.2019.126324

    Article  CAS  PubMed  Google Scholar 

  21. Cheng S, Wu J (2013) Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry 92:22–26. https://doi.org/10.1016/j.bioelechem.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Cheng S (2019) Effects of using anode biofilm and cathode biofilm bacteria as inoculum on the start-up, electricity generation, and microbial community of air-cathode single-chamber microbial fuel cells. Pol J Environ Stud 28:693–700

    CAS  Google Scholar 

  23. Yang X, Beyenal H, Harkin G, Lewandowski Z (2000) Quantifying biofilm structure using image analysis. J Microbiol Meth 39:109–119. https://doi.org/10.1016/S0167-7012(99)00097-4

    Article  CAS  Google Scholar 

  24. Beyenal H, Lewandowski Z, Harkin G (2004) Quantifying biofilm structure: facts and fiction. Biofouling 20:1–23. https://doi.org/10.1080/0892701042000191628

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Cheng S, Sun Y, Li C (2017) Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol Lett 39:1515–1520. https://doi.org/10.1007/s10529-017-2384-4

    Article  CAS  PubMed  Google Scholar 

  26. Ni B, Zeng RJ, Fang F, Xu J, Sheng G, Yu H (2009) A novel approach to evaluate the production kinetics of extracellular polymeric substances (EPS) by activated sludge using weighted nonlinear least-squares analysis. Environ Sci Technol 43:3743–3750. https://doi.org/10.1021/es9001289

    Article  CAS  PubMed  Google Scholar 

  27. Dhar BR, Sim J, Ryu H, Ren H, Santo Domingo JW, Chae J, Lee HS (2017) Microbial activity influences electrical conductivity of biofilm anode. Water Res 127:230–238. https://doi.org/10.1016/j.watres.2017.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossi R, Logan BE (2020) Unraveling the contributions of internal resistance components in two-chamber microbial fuel cells using the electrode potential slope analysis. Electrochim Acta 348:136291. https://doi.org/10.1016/j.electacta.2020.136291

    Article  CAS  Google Scholar 

  29. Sharma Y, Li B (2010) The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresource Technol 101:1844–1850. https://doi.org/10.1016/j.biortech.2009.10.040

    Article  CAS  Google Scholar 

  30. Bond DR, Lovley DR (2002) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb 69:1548–1555. https://doi.org/10.1128/AEM.69.3.1548

    Article  Google Scholar 

  31. Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6:2002–2013. https://doi.org/10.1038/ismej.2012.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energ Environ Sci 4:4366–4379. https://doi.org/10.1039/c1ee01753e

    Article  CAS  Google Scholar 

  33. Fan Y, Hu H, Liu H (2007) Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol 41:8154–8158. https://doi.org/10.1021/es071739c

    Article  CAS  PubMed  Google Scholar 

  34. Stewart PS (2012) Mini-review: convection around biofilms. Biofouling (Chur, Switzerland) 28:187–198. https://doi.org/10.1080/08927014.2012.662641

    Article  Google Scholar 

  35. Shen Y, Wang M, Chang IS, Ng HY (2013) Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technol 136:707–710. https://doi.org/10.1016/j.biortech.2013.02.069

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 52070162, 51778562) and the National Key Research and Development Program of China (2018YFA0901300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoan Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Cheng, S. External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance. Bioprocess Biosyst Eng 45, 269–277 (2022). https://doi.org/10.1007/s00449-021-02658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02658-9

Keywords

Navigation