Skip to main content
Log in

Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present work, a simple, novel, and ecofriendly method for synthesis of silver nanoparticles (AgNPs) and BC/AgNP composite using bacterial cellulose (BC) nanofibers soaked in AgNO3 solution under induction action of solar radiation. The photochemical reduction of silver Ag + ions into silver nanoparticles (Ago) was confirmed using UV visible spectra; the surface plasmon resonance of synthesized AgNPs was localized around 425 nm. The mean diameter of AgNPs obtained by DLS analysis was 52.0 nm with a zeta potential value of − 9.98 mV. TEM images showed a spherical shape of AgNPs. The formation of BC/AgNP composite was confirmed by FESEM, EDX, FTIR, and XRD analysis. FESEM images for BC showed the 3D structures of BC nanofibers and the deposited AgNPs in the BC crystalline nanofibers. XRD measurements revealed the high crystallinity of BC and BC/AgNP composite with crystal sizes of 5.13 and 5.6 nm, respectively. BC/AgNP composite and AgNPs exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria. The present work introduces a facile green approach for BC/AgNP composite synthesis and its utility as potential food packaging and wound dressings, as well as sunlight indicator application.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published paper.

References

  1. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    CAS  PubMed  Google Scholar 

  2. Hu X, Zhang Y, Ding T, Liu J, Zhao H (2020) Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 8:990

    PubMed  PubMed Central  Google Scholar 

  3. Sanford J, Venkatapathy R (2010) State of the science literature review: everything nanosilver and more. In: Sanford J, Venkatapathy R (eds) Scientific, technical, research, engineering, and modeling support final report. US Environmental Protection Agency, Office of Research and Development, Washington, pp 1–197

    Google Scholar 

  4. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policymakers. ACS Publications, Wastington

    Google Scholar 

  5. Alavi M, Varma RS (2021) Photosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: recent advances. Sustain Chem Pharm 21:100412

    Google Scholar 

  6. Some S, Sen IK, MandalA AT, Ustun Y, Yilmaz EŞ, Katı A, Demirbas A, Mandal AK, Ocsoy I (2018) Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater Res Express 6(1):012001

    Google Scholar 

  7. Restrepo CV, Villa CC (2021) Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: a review. Environ Nanotechnol Monit Manag. https://doi.org/10.1016/j.enmm.2021.100428

    Article  Google Scholar 

  8. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145(1–2):83–96

    CAS  Google Scholar 

  9. Siracusa V, Rocculi P, Romani S, Dalla RM (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    CAS  Google Scholar 

  10. Alavi M, Webster TJ (2021) Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: is there a real difference. Biorg Med Chem 33:116028

    CAS  Google Scholar 

  11. Alavi M, Rai M (2019) Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev Anti Infect Ther 17(6):419–428

    CAS  PubMed  Google Scholar 

  12. Huang Y, Zhao X, Zhang Z, Liang Y, Yin Z, Chen B, Bai L, Han Y, Guo B (2020) Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem Mater 32(15):6595–6610

    CAS  Google Scholar 

  13. Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 122:238–254

    CAS  PubMed  Google Scholar 

  14. Shahzad A, Khan A, Afzal Z, Umer MF, Khan J, Khan GM (2019) Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings. Int J Biol Macromol 124:255–269

    CAS  PubMed  Google Scholar 

  15. Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C (2019) Highly polydisperse keratin-rich nanofibers: scaffold design and in vitro characterization. J Biomed Mater Res Part A 107(8):1803–1813

    CAS  Google Scholar 

  16. Hebeish A, Shaheen TI, El-Naggar ME (2016) Solid-state synthesis of starch-capped silver nanoparticles. Int J Biol Macromol 87:70–76

    CAS  PubMed  Google Scholar 

  17. Luo LJ, Lin TY, Yao CH, Kuo PY, Matsusaki M, Harroun SG, Huang CC, Lai JY (2019) Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J Colloid Interface Sci 536:112–126

    CAS  PubMed  Google Scholar 

  18. Yin IX, Yu OY, Zhao IS, Mei ML, Li QL, Tang J, Chu CH (2019) Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch Oral Biol 102:106–112

    CAS  PubMed  Google Scholar 

  19. Pawcenis D, Chlebda DK, Jędrzejczyk RJ, Leśniak M, Sitarz M, Łojewska J (2019) Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose. Eur Polymer J 116:242–255

    CAS  Google Scholar 

  20. Masino D, Rivard C, Landrot G, Novales B, Rabilloud T, Capron I (2021) Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes. J Colloid Interface Sci 584:360–371

    Google Scholar 

  21. Borges J, Godinho M, Martins A, Trindade A, Belgacem M (2001) Cellulose-based composite films. Mech Compos Mater 37(3):257–264

    CAS  Google Scholar 

  22. Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd Polym 87(4):2482–2487

    CAS  Google Scholar 

  23. Pal S, Nisi R, StoppaM LA (2017) Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega 2(7):3632–3639

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma B, Chaudhary JP, Zhu J, Sun B, Chen C, Sun D (2021) Construction of silver nanoparticles anchored in carbonized bacterial cellulose with enhanced antibacterial properties. Colloids Surf A Physicochem Eng Asp 611:125845

    CAS  Google Scholar 

  25. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10(1):1–8

    CAS  Google Scholar 

  26. Suwanposri A, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in Thailand. Maejo Int J Sci Technol 7(1):70–82

    CAS  Google Scholar 

  27. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–545

    CAS  Google Scholar 

  28. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. In: Klemm D (ed) Polysaccharides 2, vol 205. Springer, Berlin, pp 49–96

  29. Phisalaphong M, Suwanmajo T, Tammarate P (2008) Synthesis and characterization of bacterial cellulose/alginate blend membranes. J Appl Polym Sci 107(5):3419–3424

    CAS  Google Scholar 

  30. Keshk SM (2014) Bacterial cellulose production and its industrial applications. Bioproces Biotech 4:2

    Google Scholar 

  31. AzeredoH BH, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:7

    Google Scholar 

  32. Barud HS, Regiani T, Marques RF, Lustri WR, Messaddeq Y, Ribeiro SJ (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 721631:8

    Google Scholar 

  33. Wang W, Yu Z, Alsammarraie FK, Kong F, Lin M, Mustapha A (2020) Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids 100:105411

    CAS  Google Scholar 

  34. Chien YH, Huang CC, Wang SW, Yeh CS (2011) Synthesis of nanoparticles: sunlight formation of gold nanodecahedra for ultra-sensitive lead-ion detection. Green Chem 13(5):1162–1166

    CAS  Google Scholar 

  35. Susilowati E (2018) Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/349/1/012019

    Article  Google Scholar 

  36. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345

    CAS  PubMed  PubMed Central  Google Scholar 

  37. CLSI (2016) Performance standards for antimicrobial susceptibility testing, supplement M100S, 26th edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  38. Patel J et al (2017) M100 performance standards for antimicrobial susceptibility testing 240. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  39. Ahmed KB, Senthilnathan R, Megarajan S, Anbazhagan V (2015) Sunlight mediated synthesis of silver nanoparticles using redox photoprotein and their application in catalysis and colorimetric mercury sensing. J Photochem Photobiol B 151:39–45

    CAS  PubMed  Google Scholar 

  40. Shang H, Zhou Z, Wu X, Li X, Xu Y (2020) Sunlight-induced synthesis of-target biosafety silver nanoparticles for the control of rice bacterial diseases. Nanomaterials 10(10):2007

    CAS  PubMed Central  Google Scholar 

  41. Nallal VU, Prabha K, Vetha PI, Ravindran B, Baazeem A, Chang SW, Otunola GA, Razia M (2021) Sunlight-driven rapid and facile synthesis of silver nanoparticles using Allium ampeloprasum extract with enhanced antioxidant and antifungal activity. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2021.05.001

    Article  Google Scholar 

  42. Bhaduri GA, Little R, Khomane RB, Lokhande SU, Kulkarni BD, Mendis BG, Šiller L (2013) Green synthesis of silver nanoparticles using sunlight. J Photochem Photobiol A 258:1–9

    CAS  Google Scholar 

  43. Rawat V, Sharma A, Bhatt VP, Singh RP, Maurya IK (2020) Sunlight mediated green synthesis of silver nanoparticles using Polygonatum graminifolium leaf extract and their antibacterial activity. Mater Today Proc 29:911–916

    CAS  Google Scholar 

  44. Tanner EE, Tschulik K, Tahany R, Jurkschat K, Batchelor MC, Compton RG (2015) Nanoparticle capping agent dynamics and electron transfer: polymer-gated oxidation of silver nanoparticles. J Phys Chem C 119(32):18808–18815

    CAS  Google Scholar 

  45. Bhatti H, Kumar S, Singh K (2013) Structural and optical characterization of hydroxy-propyl methyl cellulose-capped ZnO nanorods. J Mater Sci 48(16):5536–5542

    CAS  Google Scholar 

  46. Xiong R, Lu C, Zhang W, Zhou Z, Zhang X (2013) Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohyd Polym 95(1):214–219

    CAS  Google Scholar 

  47. Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI (2018) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Testing 65:54–68

    CAS  Google Scholar 

  48. Cai J, Kimura S, WadaKuga MS (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromol 10(1):87–94

    CAS  Google Scholar 

  49. Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohyd Polym 87(1):839–845

    CAS  Google Scholar 

  50. Gupta A, Srivastava P, Bahadur L, Amalnerkar DP, Chauhan R (2014) Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl Nanosci. https://doi.org/10.1007/s13204-014-0379-1

    Article  Google Scholar 

  51. Skoglund S, Blomberg E, Wallinder IO, Grillo I, Pedersen JS, Bergström LM (2017) A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant. Phys Chem Chem Phys 19(41):28037–28043

    CAS  PubMed  Google Scholar 

  52. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohyd Polym 91(2):638–645

    CAS  Google Scholar 

  53. Cacicedo ML, Pacheco G, Islan GA, AlvarezBarud AVHS, Castro GR (2020) Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: preparation and characterization studies. Int J Biol Macromol 147:1136–1145

    CAS  PubMed  Google Scholar 

  54. Biswas A, Pal S, Udayabhanu G (2017) Effect of chemical modification of a natural polysaccharide on its inhibitory action on mild steel in 15% HCl solution. J Adhes Sci Technol 31(22):2468–2489. https://doi.org/10.1080/01694243.2017.1306912

    Article  CAS  Google Scholar 

  55. Osorio M, Ortiz I, Gañán P, Naranjo T, Zuluaga R, van Kooten T, Castro C (2019) Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering. Mater Sci Eng C 100:697–705

    CAS  Google Scholar 

  56. Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015) Evaluating the possibility of using acetone–butanol–ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60(5):491–496

    CAS  PubMed  Google Scholar 

  57. Wang Y, Gu FQ, Ni LJ, Liang K, Marcus K, Liu S, Yang F, Chen J, Feng Z (2017) Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale 9(46):18318–18325

    CAS  PubMed  Google Scholar 

  58. Wan Y, Yang S, Wang J, Gan D, Gama M, Yang Z, Zhu Y, Yao F, Luo H (2020) Scalable synthesis of robust and stretchable composite wound dressings by dispersing silver nanowires in continuous bacterial cellulose. Compos Part B Eng 199:108259

    CAS  Google Scholar 

  59. Yan Z, Chen S, Wang H, Wang B, Wang C, Jiang J (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohyd Res 343(1):73–80

    CAS  Google Scholar 

  60. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohyd Polym 102:762–771

    CAS  Google Scholar 

  61. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 90:173–176

    CAS  Google Scholar 

  62. Mageswari A, Subramanian P, Ravindran V, Yesodharan S, Bagavan A, Rahuman AA, Karthikeyan S, Gothandam KM (2015) Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mantellic. Environ Sci Pollut Res 22(7):5383–5394

    CAS  Google Scholar 

  63. Rose GK, Soni R, Rishi P, Soni SK (2019) Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process Synth 8(1):144–156

    CAS  Google Scholar 

  64. Klug HP, Alexander LE (1954) X-ray procedures. Wiley, New York, pp 491–538

    Google Scholar 

  65. Shafaat K, Hussain A, Kumar B, Hasan R, Prabhat P, Yadav V (2013) An overview: storage of pharmaceutical products. World J Pharm Sci 2(5):2499–2515

    Google Scholar 

  66. Torres F, Arroyo J, Troncoso O (2019) Bacterial cellulose nanocomposites: an all-nano type of material. Mater Sci Eng C 98:1277–1293

    CAS  Google Scholar 

  67. El-Sherbiny GM, Lila MK, Shetaia YM, Elswify MM, Mohamed SS (2020) Antimicrobial activity of biosynthesized silver nanoparticles against multidrug-resistant microbes isolated from cancer patients with bacteremia and candidemia. Indian J Med Microbiol 38(3):371–378

    PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GM. ES: participation in the development of the research plan, interpretation of the results of the microbiological aspects, and revision of the manuscript. NH.M.: performed bacterial growth, bacterial cellulose production, and synthesis of AgNPs and BC/AgNP composite. SA.A.: performed characterization of AgNPs and BC/AgNP, revision of the manuscript. AA.A.: performed antibacterial activity of AgNPs and BC/AgNP, interpretation of the results, and revision of the manuscript. AA.H: Conceiving the presented idea and supervision of the research; co-wrote the paper. The manuscript was reviewed and approved by all authors before submission for peer review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gamal M. EL-Sherbiny.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Sherbiny, G.M., Abou El-Nour, S.A., Askar, A.A. et al. Solar radiation-induced synthesis of bacterial cellulose/silver nanoparticles (BC/AgNPs) composite using BC as reducing and capping agent. Bioprocess Biosyst Eng 45, 257–268 (2022). https://doi.org/10.1007/s00449-021-02655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02655-y

Keywords

Navigation