Skip to main content
Log in

Development of bioactive solid support for immobilized Lactobacillus casei biofilms and the production of lactic acid

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polypropylene was modified to contain chitosan and evaluate its ability to generate Lactobacillus casei biofilms and their lactic acid production. Biofilm formation was carried out in either rich or minimal media. The chitosan-modified polypropylene harbored ~ 37% more cells than the control polypropylene. The biofilms from the chitosan-modified polypropylene grown in rich medium produced ~ 2 times more lactic acid after 72 h of incubation than the control suspended cells. There was no significant difference in the production of lactic acid after 72 h by L. casei biofilms on the chitosan-modified polypropylene grown in minimal media as compared with cells in suspension after 48 h and 72 h of incubation. Infrared spectroscopy confirmed higher deposition of nutrients and biomass on the chitosan-modified polypropylene as compared to the chitosan-free polypropylene. Electron and atomic force microscopy confirmed thicker biofilms when rich media were used to grow them as compared to minimal medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ercan D, Pongtharangkul T, Demirci A, Pometto AL III (2015) Applications of biofilm reactors for production of value-added products by microbial fermentation. In: Anthony LP, Ali D (eds) Biofilms in the food environment. Wiley, pp 255–283

  2. Verbelen PJ, De Schutter DP, Delvaux F et al (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525. https://doi.org/10.1007/s10529-006-9132-5

    Article  CAS  PubMed  Google Scholar 

  3. Klein J, Ziehr H (1990) Immobilization of microbial cells by adsorption. J Biotechnol 16:1–15. https://doi.org/10.1016/0168-1656(90)90061-f

    Article  PubMed  Google Scholar 

  4. Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Therm Fluid Sci 14:316–322. https://doi.org/10.1016/S0894-1777(96)00134-3

    Article  CAS  Google Scholar 

  5. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, Boston

    Google Scholar 

  6. Genari AN, Passos FV, Passos FML (2003) Configuration of a bioreactor for milk lactose hydrolysis. J Dairy Sci 86:2783–2789. https://doi.org/10.3168/jds.S0022-0302(03)73875-2

    Article  CAS  PubMed  Google Scholar 

  7. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13. https://doi.org/10.1016/S0958-6946(02)00155-3

    Article  CAS  Google Scholar 

  8. Lamboley L, St-Gelais D, Champagne CP, Lamoureux M (2003) Growth and morphology of thermophilic dairy starters in alginate beads. J Gen Appl Microbiol 49:205–214

    Article  CAS  Google Scholar 

  9. Lemay MJ, Champagne CP, Gariépy C, Saucier L (2002) A comparison of the effect of meat formulation on the heat resistance of free or encapsulated cultures of Lactobacillus sakei. J Food Sci 67:3428–3434. https://doi.org/10.1111/j.1365-2621.2002.tb09601.x

    Article  CAS  Google Scholar 

  10. Champagne CP, Lee BH, Saucier L (2010) Immobilization of cells and enzymes for fermented dairy or meat products. In: Zuidam NJ, Nedović V (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 345–365

    Chapter  Google Scholar 

  11. Champagne CP, Gardner NJ, Lacroix C (2007) Fermentation technologies for the production of exopolysaccharide-synthesizing Lactobacillus rhamnosus concentrated cultures. Electron J Biotechnol 10:211–220

    Article  CAS  Google Scholar 

  12. Morin N, Bernier-Cardou M, Champagne CP (1992) Production of Lactococcus lactis biomass by immobilized cell technology. J Ind Microbiol 9:131–135. https://doi.org/10.1007/BF01569745

    Article  Google Scholar 

  13. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  14. Bastarrachea LJ, Denis-Rohr A, Goddard JM (2015) Antimicrobial food equipment coatings: applications and challenges. Annu Rev Food Sci Technol 6:97–118. https://doi.org/10.1146/annurev-food-022814-015453

    Article  CAS  PubMed  Google Scholar 

  15. Backer WE, Hu G (2001) Introduction. In: Baker WE, Scott CE, Hu G (eds) Reactive polymer blending. Cincinnati, OH, pp 2–12

    Chapter  Google Scholar 

  16. Gagon AT, Britt DW, Bastarrachea LJ (2020) Antimicrobial light-activated polypropylene modified with chitosan: characterization and reusability. J Agric Food Chem 68:13076–13082. https://doi.org/10.1021/acs.jafc.9b06009

    Article  CAS  PubMed  Google Scholar 

  17. Gagon AT, Britt DW, Bastarrachea LJ (2020) Zein-modified antimicrobial polypropylene: characterization and reusability upon UV-A light exposure. LWT 121:108983. https://doi.org/10.1016/j.lwt.2019.108983

    Article  CAS  Google Scholar 

  18. Bastarrachea LJ (2019) Antimicrobial polypropylene with ε-poly(lysine): effectiveness under UV-A light and food storage applications. LWT 102:276–283. https://doi.org/10.1016/j.lwt.2018.12.047

    Article  CAS  Google Scholar 

  19. Bastarrachea LJ, Goddard JM (2016) Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter. Appl Surf Sci 378:479–488. https://doi.org/10.1016/j.apsusc.2016.03.198

    Article  CAS  Google Scholar 

  20. Machluf M (2005) Protein therapeutic delivery using encapsulated cell platform. In: Nedović V, Willaert R (eds) Applications of cell immobilisation biotechnology. Springer, Netherlands, pp 197–210

    Chapter  Google Scholar 

  21. Nedović V, Willaert R, Leskošek-Čukalović I et al (2005) Beer production using immobilized cells. In: Nedović V, Willaert R (eds) Applications of cell immobilization biotechnology. Springer, Netherlands, pp 259–273

    Chapter  Google Scholar 

  22. Willaert Ronnie G, Baron Gino V (1996) Gel eentrapment and micro-encapsulation: methods, applications and engineering principles. Rev Chem Eng 12:1–205. https://doi.org/10.1515/REVCE.1996.12.1-2.1

    Article  CAS  Google Scholar 

  23. Ho KL, Pometto AL 3rd, Hinz PN et al (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol 63:2516–2523. https://doi.org/10.1128/AEM.63.7.2516-2523.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malinconico M, Vink ETH, Cain A (2018) Applications of poly(lactic acid) in commodities and specialties. Adv Polym Sci 282:35–50

    Article  CAS  Google Scholar 

  25. Vinay-Lara E, Wang S, Bai L et al (2016) Lactobacillus casei as a biocatalyst for biofuel production. J Ind Microbiol Biotechnol 43:1205–1213. https://doi.org/10.1007/s10295-016-1797-8

    Article  CAS  PubMed  Google Scholar 

  26. Kandler O, Weiss N (1986) Genus Lactobacillus. In: Sneath H, Mair N, Sharpe M, Holt J (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1063–1065

    Google Scholar 

  27. Demirci A, Pometto AL, Johnson KE (1993) Evaluation of biofilm reactor solid support for mixed-culture lactic acid production. Appl Microbiol Biotechnol 38:728–733. https://doi.org/10.1007/BF00167135

    Article  CAS  Google Scholar 

  28. Demirci A, Pometto AL (1995) Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production. Appl Microbiol Biotechnol 43:585–589. https://doi.org/10.1007/BF00164758

    Article  CAS  Google Scholar 

  29. Fiehn O (2016) Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30.4.1-30.4.32. https://doi.org/10.1002/0471142727.mb3004s114

    Article  Google Scholar 

  30. Smith BC (1998) Infrared spectral interpretation: a systematic approach. Taylor & Francis

  31. Barish JA, Goddard JM (2013) Anti-fouling surface modified stainless steel for food processing. Food Bioprod Process 91:352–361. https://doi.org/10.1016/j.fbp.2013.01.003

    Article  CAS  Google Scholar 

  32. Santos MI, Gerbino E, Tymczyszyn E, Gomez-Zavaglia A (2015) Applications of infrared and raman spectroscopies to probiotic investigation. Foods (Basel, Switzerland) 4:283–305. https://doi.org/10.3390/foods4030283

    Article  CAS  Google Scholar 

  33. Liu J, Deng Y, Li L et al (2018) Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci Rep 8:11446. https://doi.org/10.1038/s41598-018-28949-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. John Yun from SI group, Inc. for providing Polybond 7200 and Dr. FenAnn Shen from the Microscopy Core Facility at Utah State University (Logan, UT) for assistance in the Scanning Electron Microscopy analyses. This work was supported by the Utah Agricultural Experiment Station UTA01377 and approved as Journal Paper 9500.

Funding

Utah Agricultural Experiment Station project UTA01377.

Author information

Authors and Affiliations

Authors

Contributions

LJB designed and executed experiments, authors DWB and REW aided in surface and metabolite analytical techniques, author AD provided additional assistance in experimental design and results interpretation.

Corresponding author

Correspondence to Luis J. Bastarrachea.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastarrachea, L.J., Britt, D.W., Ward, R.E. et al. Development of bioactive solid support for immobilized Lactobacillus casei biofilms and the production of lactic acid. Bioprocess Biosyst Eng 45, 217–226 (2022). https://doi.org/10.1007/s00449-021-02654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02654-z

Keywords

Navigation