Skip to main content
Log in

Xylanolytic enzyme consortia from Bacillus sp. NIORKP76 for improved biobleaching of kraft pulp

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A cellulase-free xylanolytic enzyme consortia consisting of a xylanase, arabinofuranosidase, and acetyl xylan esterase produced by Bacillus sp. NIORKP76 isolate under solid-state fermentation was assessed for its bio-bleaching ability on kraft pulp. In the biobleaching analysis, the xylanase dose of 5 Ug−1 dry pulp denoted the optimum bleaching of pulp at 40 °C and pH 8.0 after 2 h of treatment. The reduction in kappa number of pre-treated hardwood pulp using xylanolytic enzyme consortium (XEC) was found to be ~ 55%, while solo xylanase could reduce the kappa number to 44–46%. In the case of chemical bagasse pulp, a reduction of ~ 27.5% and 19–20% was seen in kappa number using XEC and solo xylanase, respectively. Enzyme-treated pulp (HW and CB) showed a 50% reduction in hypochlorite consumption during the chlorine treatment. The current study results reveal the significant potential of xylanolytic enzyme consortium from Bacillus sp. NIORKP76 on the environmentally friendly bio-bleaching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh G, Kaur S, Khatri M, Arya SK (2019) Biobleaching for pulp and paper industry in India: emerging enzyme technology. Biocat Agri Biotechnol 17:558–565. https://doi.org/10.1016/j.bcab.2019.01.019

    Article  Google Scholar 

  2. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enz Microbial Technol 27(7):459–466. https://doi.org/10.1016/s0141-0229(00)00231-3

    Article  CAS  Google Scholar 

  3. Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: From an idea to the industry. FEMS Microbiol Rev 13(2–3):335–350. https://doi.org/10.1111/j.1574-6976.1994.tb00053.x

    Article  CAS  Google Scholar 

  4. Koponen R (1991) Enzyme systems prove their potential. Pulp Paper Int 33(11):20–25

    Google Scholar 

  5. Nagar S, Gupta VK (2020) Hyper production and eco-friendly bleaching of kraft pulp by xylanase from Bacillus pumilus SV-205 using agro waste material. Waste Biomass Valorization. https://doi.org/10.1007/s12649-020-01258-0

    Article  Google Scholar 

  6. Dutta PD, Neog B, Goswami T (2020) Xylanase enzyme production from Bacillus australimaris P5 for prebleaching of bamboo (Bambusa tulda) pulp. Materials Chem Phy 243:122227. https://doi.org/10.1016/j.matchemphys.2019.122227

    Article  CAS  Google Scholar 

  7. Khandepaker R, Bhosle NB (2007) Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Biores Technol 98:897–903. https://doi.org/10.1016/j.biortech.2006.02.037

    Article  CAS  Google Scholar 

  8. Nair SG, Sindhu R, Shashidhar S (2010) Enzymatic bleaching of kraft pulp by xylanase from Aspergillus sydowii SBS 45. Indian J Microbiol 50:332–338. https://doi.org/10.1007/s12088-010-0049-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chawannapak W, Laothanachareon T, Boonyapakron K, Wongwilaiwalin S, Nimchua T, Eurwilaichitr L, Pootanakit K, Igarashi Y, Champreda V (2012) Alkaliphilic endoxylanase from lignocellulolytic microbial consortium metagenome for biobleaching of eucalyptus pulp. J Microbiol Biotechnol 22(12):1636–1643. https://doi.org/10.4014/jmb.1206.06044

    Article  CAS  Google Scholar 

  10. Sridevi A, Sandhya G, Ramanjaneyulu G, Narasimha P, Devi S (2016) Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching. 3Biotech 6:165. https://doi.org/10.1007/s13205-016-0480-0

    Article  CAS  Google Scholar 

  11. Woodward J (1984) Xylanases: functions, properties and applications. Topics Enz Ferment Biotechnol 8:9–30

    CAS  Google Scholar 

  12. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coughlan MP, Hazlewood GP (1993) beta-1,4-D-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17(3):259–289

    CAS  PubMed  Google Scholar 

  14. Clarke JH, Davidson K, Rixon JE, Halstead JR, Fransen MP, Gilbert HJ, Hazlewood GP (2000) A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Appl Microbiol Biotechnol 53:661–667. https://doi.org/10.1007/s002530000344

    Article  CAS  PubMed  Google Scholar 

  15. Bajpai P, Anand A, Sharma N, Mishra SP, Bajpai PK, Lachenal D (2006) Enzymes improve ECF bleaching of pulp. BioRes 1(1):34–44

    Article  Google Scholar 

  16. Mi S, Jia X, Wang J, Qiao W, Peng X, Han Y (2014) Biochemical characterization of two thermostable xylanolytic enzymes encoded by a gene cluster of Caldicellulosiruptor owensensis. PLoS One 9(8):e105264. https://doi.org/10.1371/journal.pone.0105264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaturvedi S, Singh R, Khurana SPM (2015) Production of bacterial—xylanolytic enzyme using agricultural waste by solid state fermentation. Int J Curr Microbiol App Sci 4(4):9–16

    CAS  Google Scholar 

  18. Liao H, Zheng H, Li S (2015) Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep 5:12631. https://doi.org/10.1038/srep12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teeravivattanakit T, Baramee S, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Sakka K, Ratanakhanokchaia K (2016) Novel trifunctional xylanolytic enzyme Axy43A from Paenibacillus curdlanolyticus strain B-6 exhibiting endo-xylanase, β-D-xylosidase, and arabinoxylan arabinofuranohydrolase activities. Appl Environ Microbiol 82:6942–6951. https://doi.org/10.1128/AEM.02256-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nawawi MH, Mohamad R, Tahir PM, Saad WZ (2017) Extracellular xylanopectinolytic enzymes by Bacillus subtilis ADI1 from EFB’s compost. Int Scho Res Notices. https://doi.org/10.1155/2017/7831954

    Article  Google Scholar 

  21. Elegir G, Sykes M, Jeffries TW (1995) Differential and synergistic action of Streptomyces endoxylanases in prebleaching of kraft pulps. Enz Microbial Technol 17(10):954–959. https://doi.org/10.1016/0141-0229(94)00122-8

    Article  CAS  Google Scholar 

  22. Parab PD, Khandeparker RD, Shenoy BD, Sharma J (2020) Phylogenetic diversity of culturable marine bacteria from Mangrove Sediments of Goa, India: a potential source of xylanases belonging to glycosyl hydrolase family 10. Appl Biochem Microbiol 56(6):718–728. https://doi.org/10.1134/S0003683820060137

    Article  CAS  Google Scholar 

  23. Mai-Gisondi G, Master ER (2017) Colorimetric detection of acetyl xylan esterase activities. Protein-carbohydrate interactions. Methods Mol Biol 1588:45–57. https://doi.org/10.1007/978-1-4939-6899-2_5

    Article  CAS  PubMed  Google Scholar 

  24. Buzała KP, Kalinowska H, Borkowski J, Przybysz P (2018) Effect of xylanases on refining process and kraft pulp properties. Cellulose 25:1319–1328. https://doi.org/10.1007/s10570-017-1609-y

    Article  CAS  Google Scholar 

  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  26. Liu H, Shi H, Wang Y, Wu W, Ni Y (2014) Interactions of lignin with optical brightening agents and their effect on paper optical properties. Ind Eng Chem Res 53(8):3091–3096. https://doi.org/10.1021/ie4032082

    Article  CAS  Google Scholar 

  27. Tessier P, Savoie M (2002) Brightness reversion of hardwood and softwood kraft pulps during bleaching. Tappi J 1(8):28–32

    CAS  Google Scholar 

  28. Reid ID, Paice MG (1994) Effect of residual lignin type and amount on bleaching of kraft pulp by Trametes versicolor. Appl Env Microbiol 60(5):1395–1400. https://doi.org/10.1128/aem.60.5.1395-1400.1994

    Article  CAS  Google Scholar 

  29. Hu G, Fu S, Chu F, Lin M (2017) Relationship between paper whiteness and color reproduction in inkjet printing. BioResources 12(3):4854–4866

    Article  CAS  Google Scholar 

  30. Nissan R, Trope M, Zhang CD, Chance B (1992) Dual wavelength spectrophotometry as a diagnostic test of the pulp chamber contents. Oral Surgery Oral Med Oral Pathol 74(4):508–514. https://doi.org/10.1016/0030-4220(92)90304-9

    Article  CAS  Google Scholar 

  31. Kulkarni N, Rao M (1996) Application of xylanase from alkaliphilic thermophilic Bacillus sp. NCIM 59 in biobleaching of bagasse pulp. J Biotechnol 51(2):167–173. https://doi.org/10.1016/0168-1656(96)01616-1

    Article  CAS  Google Scholar 

  32. Patel RN, Grabski AC, Jeffries TW (1993) Chromophore release from kraft pulp by purified Streptomyces roseiscleroticus xylanases. Appl Microbiol Biotechnol 39(3):405–412. https://doi.org/10.1007/BF00192102

    Article  CAS  Google Scholar 

  33. Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2010) Bleach enhancement of mixed wood pulp by xylanase–laccase concoction derived through co-culture strategy. Appl Biochem Biotechnol 160(1):255. https://doi.org/10.1007/s12010-009-8654-4

    Article  CAS  PubMed  Google Scholar 

  34. Terrasan CR, Temer B, Sarto C, Júnior FGS, Carmona EC (2013) Xylanase and β-xylosidase from Penicillium janczewskii: production, physico-chemical properties, and application of the crude extract to pulp biobleaching. BioRes 8(1):1292–1305. https://doi.org/10.15376/biores.8.1.1292-1305

    Article  Google Scholar 

  35. Sridevi A, Ramanjaneyulu G, Devi PS (2017) Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum. 3Biotech 7(4):266. https://doi.org/10.1007/s13205-017-0898-z

    Article  CAS  Google Scholar 

  36. Bhoria P, Singh G, Sharma JR, Hoondal GS (2012) Biobleaching of wheat straw-rich-soda pulp by the application of alkalophilic and thermophilic mannanase from Streptomyces sp. PG-08-3. African J Biotechnol 11(22):6111–6116. https://doi.org/10.5897/AJB09.1238

    Article  CAS  Google Scholar 

  37. Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 38:947–956. https://doi.org/10.1007/s00449-014-1340-0

    Article  CAS  PubMed  Google Scholar 

  38. Angural S, Rana M, Sharma A, Warmoot R, Puri N, Gupta N (2020) Combinatorial biobleaching of mixedwood pulp with lignolytic and hemicellulolytic enzymes for paper making. Indian J Microbiol 60:383–387. https://doi.org/10.1007/s12088-020-00867-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ninawe S, Kuhad RC (2006) Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32. Biores Technol 97(18):2291–2295. https://doi.org/10.1016/j.biortech.2005.10.035

    Article  CAS  Google Scholar 

  40. Kapoor M, Kapoor RK, Kuhad RC (2007) Differential and synergistic effects of xylanase and laccase mediator system (LMS) in bleaching of soda and waste pulps. J Applied Microbiol 103(2007):305–317. https://doi.org/10.1111/j.1365-2672.2006.03251.x

    Article  CAS  Google Scholar 

  41. Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine-based chemicals during CEH and ECF bleaching. BioResource 7(2):2220–2235. https://doi.org/10.15376/BIORES.7.2.2220-2235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CSIR-National Institute of Oceanography, Goa (India), and Head, BOD, for giving all necessary services and encouragement. The authors thank the Council of Scientific and Industrial Research (CSIR, India) for providing financial support through the Senior Research Fellowship (SRF) to the first author. This article is part of doctoral work being submitted by the first author at Goa University in the Department of Microbiology under the corresponding author's guidance. This publication has CSIR-NIO contribution number 6790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhee Khandeparker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

449_2021_2623_MOESM1_ESM.tif

Supplementary file1 Fig. 1 Correlation between brightness development and lignin content of kraft pulp samples (TIF 166 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parab, P., Khandeparker, R. Xylanolytic enzyme consortia from Bacillus sp. NIORKP76 for improved biobleaching of kraft pulp. Bioprocess Biosyst Eng 44, 2513–2524 (2021). https://doi.org/10.1007/s00449-021-02623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02623-6

Keywords

Navigation