Skip to main content
Log in

Thermodynamics, kinetics and optimization of catalytic behavior of polyacrylamide-entrapped carboxymethyl cellulase (CMCase) for prospective industrial use

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the current study, kinetic and thermodynamic parameters of free and polyacrylamide-immobilized CMCase were analyzed. The maximum immobilization yield of 34 ± 1.7% was achieved at 11% acrylamide. The enthalpy of activation (ΔH) of free and immobilized enzyme was found to be 13.61 and 0.29 kJ mol−1, respectively. Irreversible inactivation energy of free and immobilized CMCase was 96.43 and 99.01 kJ mol−1, respectively. Similarly, the enthalpy of deactivation (ΔHd) values for free and immobilized enzyme were found to be in the range of 93.51–93.76 kJ mol−1 and 96.08–96.33 kJ mol−1, respectively. Michaelis–Menten constant (Km) increased from 1.267 ± 0.06 to 1.5891 ± 0.07 mg ml−1 and the maximum reaction rate (Vmax) value decreased (8319.47 ± 416 to 5643.34 ± 282 U ml−1 min−1) after immobilization. Due to wide pH and temperature stability profile with sufficient reusing efficiency up to three successive cycles, the immobilized CMCase might be useful for various industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong C-H, Whitesides GM (1994) Preface in tetrahedron organic chemistry series. In: Wong CH, Whitesides GM (Ed.). Elsevier. pp. xiii-xv

  2. Guisan J (2013) New opportunities for immobilization of enzymes in immobilization of enzymes and cells. In: Guisan JM (Ed). Totowa, Humana Press. pp. 1–13

  3. Ghattas N, Filice M, Abidi F, Guisan JM, Ben Salah A (2014) Purification and improvement of the functional properties of Rhizopus oryzae lipase using immobilization techniques. J Mol Catal B Enzym 110:111–116

    Article  CAS  Google Scholar 

  4. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Chem 43:1019–1032

    CAS  Google Scholar 

  5. Ó’Fágáin C (2003) Enzyme stabilization—recent experimental progress. Enzyme Microb Technol 33:137–149

    Article  CAS  Google Scholar 

  6. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  7. Cipolatti EP, Valerio A, Henriques RO, Moritz DE, Ninow JL, Freire DM, Manoel EA, Fernandez-Lafuente R, de Oliveira D (2016) Nanomaterials for biocatalyst immobilization–state of the art and future trends. RSC Adv 6:104675–104692

    Article  CAS  Google Scholar 

  8. Klibanov AM (1983) Immobilized enzymes and cells as practical catalysts. Science 219:722–727

    Article  CAS  PubMed  Google Scholar 

  9. Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A (2018) Practical insights on enzyme stabilization. Crit Rev Biotechnol 38:335–350

    Article  CAS  PubMed  Google Scholar 

  10. Tąta A, Sokołowska K, Świder J, Konieczna-Molenda A, Proniewicz E, Witek E (2015) Study of cellulolytic enzyme immobilization on copolymers of N-vinylformamide. Spectrochim Acta A Mol Biomol Spectrosc 149:494–504

    Article  PubMed  CAS  Google Scholar 

  11. Busto MD, Ortega N, Perez-Mateos M (1998) Characterization of microbial endo-β-glucanase immobilized in alginate beads. Acta Biotechnol 18:189–200

    Article  CAS  Google Scholar 

  12. Saleem M, Rashid MH, Jabbar A, Perveen R, Khalid AM, Rajoka MI (2005) Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Chem 40:849–855

    CAS  Google Scholar 

  13. Paljevac M, Primožič M, Habulin M, Novak Z, Knez Ž (2007) Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J Supercrit Fluids 43:74–80

    Article  CAS  Google Scholar 

  14. Khoshnevisan K, Bordbar A-K, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673

    Article  CAS  Google Scholar 

  15. Li C, Yoshimoto M, Fukunaga K, Nakao K (2007) Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresour Technol 98:1366–1372

    Article  CAS  PubMed  Google Scholar 

  16. Yang T-H (2008) Recent applications of polyacrylamide as biomaterials. Recent Patents on Mater Sci 1:29–40

    Article  CAS  Google Scholar 

  17. Whitesides GM, Lamotte AL, Adalsteinsson O, Baddour RF, Chmurny AC, Colton CK, Pollak A (1979) Polyacrylamide gel entrapment of adenylate kinase and acetate kinase. J Mol Catal 6:177–198

    Article  CAS  Google Scholar 

  18. Singh A, Bajar S, Devi A, Pant D (2021) An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresour Technol Rep 14:100652

    Article  Google Scholar 

  19. Gonzalez-Saiz J, Pizarro C (2001) Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. Eur Polym J 37:435–444

    Article  CAS  Google Scholar 

  20. Abdel-Naby MA (1993) Immobilization of Aspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Appl Biochem Biotechnol 38:69–81

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Naby MA, Ahmed SA, Wehaidy HR, El-Mahdy SA (2017) Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. Int J Biol Macromol 96:265–271

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Lopez L, Rueda N, Bartolome-Cabrero R, Rodriguez MD, Albuquerque TL, dos Santos JCS, Barbosa O, Fernandez-Lafuente R (2016) Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Chem 51:48–52

    CAS  Google Scholar 

  23. Ahmed SA, Saleh SAA, Abdel-Hameed SAM, Fayad AM (2019) Catalytic, kinetic and thermodynamic properties of free and immobilized caseinase on mica glass-ceramics. Heliyon 5:e01674

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soares da Silva O, Lira de Oliveira R, de Carvalho SJ, Converti A, Souza Porto T (2018) Thermodynamic investigation of an alkaline protease from Aspergillus tamarii URM4634: a comparative approach between crude extract and purified enzyme. Int J Biol Macromol 109:1039–1044

    Article  CAS  PubMed  Google Scholar 

  25. Ghani M, Ansari A, Aman A, Zohra RR, Siddiqui NN, Qader SA (2013) Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pak J Pharm Sci 26:691–697

    CAS  PubMed  Google Scholar 

  26. Karim A, Nawaz MA, Aman A, Qader SAU (2015) Hyper production of cellulose degrading endo (1, 4) β-d-glucanase from Bacillus licheniformis KIBGE-IB2. J Radiat Res Appl Sci 8:160–165

    Article  CAS  Google Scholar 

  27. Karim A, Bibi Z, Rehman HU, Aman A, Qader SAU, Rashid MH (2021) Single step immobilization of CMCase within agarose gel matrix: kinetics and thermodynamic studies. Colloids Surfaces B Biointerfaces 200:111583

    Article  CAS  PubMed  Google Scholar 

  28. Palmer T (1995) Understanding enzyme, 3rd edn. Prentice Hall, New York, pp 356–365

    Google Scholar 

  29. Chen Y, Liu J, Xia C, Zhao C, Ren Z, Zhang W (2015) Immobilization of lipase on porous monodisperse chitosan microspheres. Biotechnol Appl Biochem 62:101–106

    Article  CAS  PubMed  Google Scholar 

  30. Palmer T (1995) Understanding Enzymes, 4th edn. Prentice Hall/Ellis Horwood, New York, pp 3–11

    Google Scholar 

  31. Das N, Kayastha AM, Malhotra OP (1998) Immobilization of urease from pigeonpea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads. Biotechnol Appl Biochem 27(Pt 1):25–29

    Article  CAS  PubMed  Google Scholar 

  32. Baselga J, Llorente MA, Hernández-Fuentes I, Piérola IF (1989) Network defects in polyacrylamide gels. Eur Polym J 25:471–475

    Article  CAS  Google Scholar 

  33. Dhiman TR, Zaman MS, Gimenez RR, Walters JL, Treacher R (2002) Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 101:115–125

    Article  CAS  Google Scholar 

  34. Pizarro C, Fernandez-Torroba MA, Benito C, Gonzalez-Saiz JM (1997) Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. Biotechnol Bioeng 53:497–506

    Article  CAS  PubMed  Google Scholar 

  35. Kidibule PE, Costa J, Atrei A, Plou FJ, Fernandez-Lobato M, Pogni R (2021) Production and characterization of chitooligosaccharides by the fungal chitinase Chit42 immobilized on magnetic nanoparticles and chitosan beads: selectivity, specificity and improved operational utility. RSC Adv 11:5529–5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kitano H, Nakamura K, Ise N (1982) Kinetic studies of enzyme immobilized on anionic polymer lattices. J Appl Biochem 4:34–40

    CAS  Google Scholar 

  37. Allenza P, Scherl DS, Detroy RW, Leathers TD, Scott C (1986) Hydrolysis of xylan by an immobilized xylanase from Aureobasidium pullanans. In Biotechnol Bioeng Symp;(United States), Allied-Signal Research Center, Des Plaines, IL, USA; USDA, NRRL, Peoria

  38. El-Bendary MA, Moharam ME, Ali TH (2009) Efficient immobilization of Milk clotting enzyme produced by Bacillus sphaericus. Polish J Food Nutr Sci 59.

  39. Homaei A (2015) Enhanced activity and stability of papain immobilized on CNBr-activated sepharose. Int J Biol Macromol 75:373–377

    Article  CAS  PubMed  Google Scholar 

  40. George R, Sugunan S (2014) Kinetic and thermodynamic parameters of immobilized glucoamylase on different mesoporous silica for starch hydrolysis: a comparative study. J Mol Catal B Enzym 106:81–89

    Article  CAS  Google Scholar 

  41. Ningsih DR, Kartika D, Fatoni A, Zuliana AL (2017) Bacillus thuringiensisHCB6 Amylase immobilization by Chitosan Beads. IOP Conf Ser Mater Sci Eng 172:012068

    Article  Google Scholar 

  42. Anwar A, Qader SAU, Raiz A, Iqbal S, Azhar AJWASJ (2009) Calcium alginate: a support material for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS. World Appl Sci J 7:1281–1286

    CAS  Google Scholar 

  43. Mazlan SZ, Hanifah SA (2017) Effects of temperature and pH on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int J Polym Sci 2017:5657271

    Article  CAS  Google Scholar 

  44. Wang H-S, Pan Q-X, Wang G-X (2005) A biosensor based on immobilization of horseradish peroxidase in chitosan matrix cross-linked with glyoxal for amperometric determination of hydrogen peroxide. 5:266-276

  45. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors (Basel, Switzerland) 7:2238–2250

    Article  CAS  Google Scholar 

  46. Jose CS, dos Santos JCS, Rueda N, Barbosa O, Fernández-Sánchez JF, Medina-Castillo AL, Ramón-Márquez T, Arias-Martos MC, Millán-Linares MC, Pedroche J, Yust MdM, Gonçalves LRB, Fernandez-Lafuente R (2015) Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Adv 5:20639–20649

    Article  CAS  Google Scholar 

  47. Chen J, Leng J, Yang X, Liao L, Liu L, Xiao A (2017) Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules 22:221

    Article  PubMed Central  CAS  Google Scholar 

  48. Bibi Z, Qader SAU, Aman A (2015) Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Extremophiles 19:819–827

    Article  CAS  PubMed  Google Scholar 

  49. Michael L Shuler FK (2001) Bioprocess Engineering Basic Concepts. 2 ed, Prentice Hall

  50. Tayefi-Nasrabadi H, Asadpour R (2008) Effect of heat treatment on buffalo (Bubalus bubalis) lactoperoxidase activity in raw milk. J Biol Sci 8:1310–1315

    Article  Google Scholar 

  51. Pal A, Khanum F (2011) Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Chem 46:1315–1322

    CAS  Google Scholar 

  52. Marin E, Sanchez L, Perez M, Puyol P, Calvo M (2003) Effect of heat treatment on bovine lactoperoxidase activity in skim milk: kinetic and thermodynamic analysis. J Food Sci 68:89–93

    Article  CAS  Google Scholar 

  53. Declerck N, Machius M, Joyet P, Wiegand G, Huber R, Gaillardin C (2003) Hyperthermostabilization of Bacillus licheniformis α-amylase and modulation of its stability over a 50 C temperature range. Protein Eng Des Sel 16:287–293

    Article  CAS  Google Scholar 

  54. Souza PM, Aliakbarian B, Filho EXF, Magalhães PO, Junior AP, Converti A, Perego P (2015) Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. Int J Biol Macromol 81:17–21

    Article  CAS  PubMed  Google Scholar 

  55. Karim A, Nawaz MA, Aman A, Qader SAU (2017) Role of anionic polysaccharide (Alginate) on activity, stability and recycling efficiency of bacterial endo (1→ 4) β-d-glucanase of GH12 family. Catal Lett 147:1792–1801

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank KIBGE, University of Karachi, for providing facilities for the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Karim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karim, A., Bibi, Z., Nawaz, M.A. et al. Thermodynamics, kinetics and optimization of catalytic behavior of polyacrylamide-entrapped carboxymethyl cellulase (CMCase) for prospective industrial use. Bioprocess Biosyst Eng 44, 2417–2427 (2021). https://doi.org/10.1007/s00449-021-02614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02614-7

Keywords

Navigation