Skip to main content
Log in

Improved thermal stability of phytase from Yersinia intermedia by physical adsorption immobilization on amino-multiwalled carbon nanotubes

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Phytase is used in poultry diets to hydrolyze and release of phytate-bound phosphorus. Immobilization on nanomaterials optimizes enzyme’s thermal stability and reusability. This study aimed to immobilize the recombinant phytase from Yersinia intermedia on the surface of amino-multi-walled carbon nanotubes (amino-MWCNTs) by physical adsorption. For this, zeta potential measurement, FTIR spectroscopic analysis, scanning electron microscope (SEM), kinetic as well as thermodynamic parameters were used to characterize immobilized phytase on amino-MWCNTs. According to results, the optimum temperature of the immobilized phytase increased from 50 to 70 °C and also thermal and pH stability improved considerably. Moreover, immobilization led to an increase in the value of Km and kcat from 0.13 to 0.33 mM and 2220 to 2776 s−1, respectively. In addition, the changes in activation energy of thermal inactivation (ΔE#a (D)), the free energy of thermal inactivation (ΔG#D) and the enthalpy of thermal inactivation (ΔH#D) for immobilized phytase increased by +11.05, +24.7 and +11.4 kj/mole, respectively, while the value of the change in the entropy of thermal inactivation (ΔS#D) decreased by − 0.04 kj/mole.K. Overall, our results showed that adsorption immobilization of phytase on amino-MWCNTs increases thermal, pH and storage stability as well as some of kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angel R, Tamim N, Applegate T, Dhandu A, Ellestad L (2002) Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy. J Appl Poultry Res 11:471–480

    Article  CAS  Google Scholar 

  2. Ushasree MV, Shyam K, Vidya J, Pandey A (2017) Microbial phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications. Biores Technol 245:1790–1799

    Article  CAS  Google Scholar 

  3. Tang J, Leung A, Leung C, Lim BL (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol Biochem 38:1316–1324

    Article  CAS  Google Scholar 

  4. Balwani I, Chakravarty K, Gaur S (2017) Role of phytase producing microorganisms towards agricultural sustainability. Biocatal Agric Biotechnol 12:23–29

    Article  Google Scholar 

  5. Fredlund K, Isaksson M, Rossander-Hulthén L, Almgren A, Sandberg A-S (2006) Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate. J Trace Elem Med Biol 20:49–57

    Article  CAS  Google Scholar 

  6. Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    Article  CAS  Google Scholar 

  7. Greiner R, Konietzny U, Jany K-D (1993) Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  CAS  Google Scholar 

  8. Ashly P, Joseph M, Mohanan P (2011) Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem 127:1808–1813

    Article  CAS  Google Scholar 

  9. Zahirinejad S, Hemmati R, Homaei A, Dinari A, Hosseinkhani S, Mohammadi S, Vianello F (2021) Nano-organic supports for enzyme immobilization: Scopes and Perspectives. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2021.111774

    Article  PubMed  Google Scholar 

  10. Klibanov AM (1979) Enzyme stabilization by immobilization. Anal Biochem 93:1–25

    Article  CAS  Google Scholar 

  11. Ashkan Z, Hemmati R, Homaei A, Dinari A, Jamlidoost M, Tashakor A (2020) Immobilization of enzymes on nanoinorganic support materials: an update. Int J Biol Macromol 168:708–721

    Article  Google Scholar 

  12. Dong H, Li J, Li Y, Hu L, Luo D (2012) Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem Eng J 181:590–596

    Article  Google Scholar 

  13. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    Article  CAS  Google Scholar 

  14. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  15. O’connell MJ (2006) Carbon nanotubes: properties and applications. CRC Press, Baco Raton

    Book  Google Scholar 

  16. Greiner R, Konietzny U, Blackburn DM, Jorquera MA (2013) Production of partially phosphorylated myo-inositol phosphates using phytases immobilised on magnetic nanoparticles. Biores Technol 142:375–383

    Article  CAS  Google Scholar 

  17. Shankar S, Soni SK, Daima HK, Selvakannan P, Khire JM, Bhargava SK, Bansal V (2015) Charge-switchable gold nanoparticles for enhanced enzymatic thermostability. Phys Chem Chem Phys 17:21517–21524

    Article  CAS  Google Scholar 

  18. Çelem EB, Önal S (2009) Immobilization of phytase on epoxy-activated Sepabead EC-EP for the hydrolysis of soymilk phytate. J Mol Catal B Enzym 61:150–156

    Article  Google Scholar 

  19. Onem H, Cicek S, Nadaroglu H (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles. CYTA J Food 14:74–83

    Article  CAS  Google Scholar 

  20. Kamaci UD, Peksel A (2020) Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. Int J Biol Macromol 164:3315–3322

    Article  Google Scholar 

  21. Kamaci UD, Peksel A (2021) Enhanced catalytic activity of immobilized phytase into polyvinyl alcohol-sodium alginate based electrospun nanofibers. Catal Lett 151:821–831

    Article  Google Scholar 

  22. Naghshbandi MP, Moghimi H, Latif B (2018) Covalent immobilization of phytase on the multi-walled carbon nanotubes via diimide-activated amidation: structural and stability study. Artif Cells Nanomed Biotechnol 46:763–772

    Article  CAS  Google Scholar 

  23. Aoki K, Saito N (2020) Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials. Nanomaterials 10:264

    Article  CAS  Google Scholar 

  24. Huang H, Luo H, Yang P, Meng K, Wang Y, Yuan T, Bai Y, Yao B (2006) A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res Commun 350:884–889

    Article  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  26. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory Manual, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  27. Mirzaei M, Saffar B, Shareghi B (2016) Cloning, codon optimization, and expression of Yersinia intermedia phytase gene in E coli. I J Biotechnol 14:63

    Google Scholar 

  28. de la Cruz EF, Zheng Y, Torres E, Li W, Song W, Burugapalli K (2012) Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int J Electrochem Sci 7:3577–3590

    Google Scholar 

  29. Khoshnevisan K, Bordbar A-K, Zare D, Davoodi D, Noruzi M, Barkhi M, Tabatabaei M (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673

    Article  CAS  Google Scholar 

  30. Naidja A, Liu C, Huang P (2002) Formation of protein–birnessite complex: XRD, FTIR, and AFM analysis. J Colloid Interface Sci 251:46–56

    Article  CAS  Google Scholar 

  31. Homaei A (2015) Enhanced activity and stability of papain immobilized on CNBr-activated sepharose. Int J Biol Macromol 75:373–377

    Article  CAS  Google Scholar 

  32. Homaei AA, Mymandi AB, Sariri R, Kamrani E, Stevanato R, Etezad S-M, Khajeh K (2013) Purification and characterization of a novel thermostable luciferase from Benthosema pterotum. J Photochem Photobiol B 125:131–136

    Article  CAS  Google Scholar 

  33. Homaei A (2015) Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain. J Mol Catal B Enzym 118:16–22

    Article  CAS  Google Scholar 

  34. Munch O, Tritsch D (1990) Irreversible thermoinactivation of glucoamylase from Aspergillus niger and thermostabilization by chemical modification of carboxyl groups. Biochim Biophys Acta Protein Struct Mol Enzymol 10:111–116

    Article  Google Scholar 

  35. Siddiqui KS, Shemsi AM, Anwar MA, Rashid MH, Rajoka MI (1999) Partial and complete alteration of surface charges of carboxymethylcellulase by chemical modification: thermostabilization in water-miscible organic solvent. Enzyme Microb Technol 24:599–608

    Article  CAS  Google Scholar 

  36. Homaei A, Etemadipour R (2015) Improving the activity and stability of actinidin by immobilization on gold nanorods. Int J Biol Macromol 72:1176–1181

    Article  CAS  Google Scholar 

  37. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Biores Technol 135:2–6

    Article  CAS  Google Scholar 

  38. Ji C, Nguyen LN, Hou J, Hai FI, Chen V (2017) Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol 178:215–223

    Article  CAS  Google Scholar 

  39. Bayazidi P, Almasi H, Asl AK (2018) Immobilization of lysozyme on bacterial cellulose nanofibers: characteristics, antimicrobial activity and morphological properties. Int J Biol Macromol 107:2544–2551

    Article  CAS  Google Scholar 

  40. Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19:1095–1100

    Article  CAS  Google Scholar 

  41. Coutinho TC, Tardioli PW, Farinas CS (2020) Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Appl Biochem Biotechnol 190:270–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Shahrkord University for the use of facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohullah Hemmati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiji, S., Hemmati, R., Homaei, A. et al. Improved thermal stability of phytase from Yersinia intermedia by physical adsorption immobilization on amino-multiwalled carbon nanotubes. Bioprocess Biosyst Eng 44, 2217–2228 (2021). https://doi.org/10.1007/s00449-021-02598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02598-4

Keywords

Navigation