Skip to main content
Log in

Computational and experimental analysis on the preferential selectivity of lipases for triglycerides in Licuri oil

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Abstract

In the present study, we demonstrated the use of molecular docking as an efficient in silico screening tool for lipase–triglyceride interactions. Computational simulations using the crystal structures from Burkholderia cepacia lipase (BCL), Thermomyces lanuginosus lipase (TLL), and pancreatic porcine lipase (PPL) were performed to elucidate the catalytic behavior with the majority triglycerides present in Licuri oil, as follows: caprilyl–dilauryl–glycerol (CyLaLa), capryl–dilauryl–glycerol (CaLaLa), capryl–lauryl–myristoyl–glycerol (CaLaM), and dilauryl–myristoyl–glycerol (LaLaM). The computational simulation results showed that BCL has the potential to preferentially catalyze the major triglycerides present in Licuri oil, demonstrating that CyLaLa, (≈25.75% oil composition) interacts directly with two of the three amino acid residues in its catalytic triad (Ser87 and His286) with the lowest energy (–5.9 kcal/mol), while other triglycerides (CaLaLa, CaLaM, and LaLaM) interact with only one amino acid (His286). In one hard, TLL showed a preference for catalyzing the triglyceride CaLaLa also interacting with His286 residue, but, achieving higher binding energies (−5.3 kcal/mol) than found in BCL (–5.7 kcal/mol). On the other hand, PPL prefers to catalyze only with LaLaM triglyceride by His264 residue interaction. When comparing the computational simulations with the experimental results, it was possible to understand how BCL and TLL display more stable binding with the majority triglycerides present in the Licuri oil, achieving conversions of 50.86 and 49.01%, respectively. These results indicate the production of fatty acid concentrates from Licuri oil with high lauric acid content. Meanwhile, this study also demonstrates the application of molecular docking as an important tool for lipase screening to reach a more sustainable production of fatty acid concentrates from vegetable oils.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bauer LC, Damásio JMA, do, da Silva MV et al (2013) Caracterização química dos óleos prensado e refinado do licuri (Syagrus coronata). Acta Sci Technol 35:771–776. https://doi.org/10.4025/actascitechnol.v35i4.20251

    Article  CAS  Google Scholar 

  2. Lisboa MC, Wiltshire FMS, Fricks AT et al (2020) Oleochemistry potential from Brazil northeastern exotic plants. Biochimie 178:96–104. https://doi.org/10.1016/j.biochi.2020.09.002

    Article  CAS  PubMed  Google Scholar 

  3. Crepaldi IC, De A-M, Rios MDG et al (2001) Composição nutricional do fruto de licuri (Syagrus coronata (Martius) Beccari). Rev Bras Botânica 24:155–159. https://doi.org/10.1590/s0100-84042001000200004

    Article  CAS  Google Scholar 

  4. da Silva T, de La Salles K, Meneghetti SMP, Ferreira de La Salles W et al (2010) Characterization of Syagrus coronata (Mart.) Becc. oil and properties of methyl esters for use as biodiesel. Ind Crops Prod 32:518–521. https://doi.org/10.1016/j.indcrop.2010.06.026

    Article  CAS  Google Scholar 

  5. Iha OK, Alves FCSC, Suarez PAZ et al (2014) Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production. Ind Crops Prod 62:318–322. https://doi.org/10.1016/j.indcrop.2014.09.003

    Article  CAS  Google Scholar 

  6. de Albuquerque UP, de Medeiros PM, de Almeida ALS et al (2007) Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 114:325–354. https://doi.org/10.1016/j.jep.2007.08.017

    Article  PubMed  Google Scholar 

  7. Leal LB, Sousa GD, Seixas KB et al (2013) Determination of the critical hydrophile-lipophile balance of licuri oil from Syagrus coronata: application for topical emulsions and evaluation of its hydrating function. Brazilian J Pharm Sci 49:167–173. https://doi.org/10.1590/S1984-82502013000100018

    Article  CAS  Google Scholar 

  8. Pereira RAG, Oliveira CJB, Medeiros AN et al (2010) Physicochemical and sensory characteristics of milk from goats supplemented with castor or licuri oil. J Dairy Sci 93:456–462. https://doi.org/10.3168/jds.2009-2315

    Article  CAS  PubMed  Google Scholar 

  9. Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838. https://doi.org/10.1021/acs.chemrev.7b00203

    Article  CAS  PubMed  Google Scholar 

  10. Tavares F, Petry J, Sackser PR et al (2018) Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2018.06.073

    Article  Google Scholar 

  11. Ferreira MM, de Oliveira GF, Basso RC et al (2019) Optimization of free fatty acid production by enzymatic hydrolysis of vegetable oils using a non-commercial lipase from Geotrichum candidum. Bioprocess Biosyst Eng 42:1647–1659. https://doi.org/10.1007/s00449-019-02161-2

    Article  CAS  PubMed  Google Scholar 

  12. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251. https://doi.org/10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  13. Sarmah N, Revathi D, Sridhar S et al (2017) Recent advances on sources and industrial applications of lipases. Biotechnol Prog 53:112–119. https://doi.org/10.1002/btpr

    Article  Google Scholar 

  14. Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569. https://doi.org/10.1016/j.procbio.2012.01.011

    Article  CAS  Google Scholar 

  15. Arana-Peña S, Carballares D, Berenguer-Murcia Á et al (2020) One pot use of combilipases for full modification of oils and fats: multifunctional and heterogeneous substrates. Catalysts 10:605

    Article  Google Scholar 

  16. Lerin LA, Loss RA, Remonatto D et al (2014) A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1222-5

    Article  PubMed  Google Scholar 

  17. Ramani K, Saranya P, Jain SC, Sekaran G (2013) Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-012-0785-2

    Article  PubMed  Google Scholar 

  18. Kamal MZ, Barrow CJ, Rao NM (2015) A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols. Food Chem 173:1030–1036. https://doi.org/10.1016/j.foodchem.2014.10.124

    Article  CAS  PubMed  Google Scholar 

  19. Bisht M, Mondal D, Pereira MM et al (2017) Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chem. https://doi.org/10.1039/c7gc02011b

    Article  PubMed  PubMed Central  Google Scholar 

  20. Islam MT, Biswas S, Bagchi R et al (2019) Ponicidin as a promising anticancer agent: Its biological and biopharmaceutical profile along with a molecular docking study. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1740

    Article  PubMed  Google Scholar 

  21. Hanke AT, Klijn ME, Verhaert PDEM et al (2016) Prediction of protein retention times in hydrophobic interaction chromatography by robust statistical characterization of their atomic-level surface properties. Biotechnol Prog. https://doi.org/10.1002/btpr.2219

    Article  PubMed  Google Scholar 

  22. Weiser D, Sóti PL, Bánóczi G et al (2016) Bioimprinted lipases in PVA nanofibers as efficient immobilized biocatalysts. Tetrahedron 72:7335–7342. https://doi.org/10.1016/j.tet.2016.06.027

    Article  CAS  Google Scholar 

  23. Almeida LC, Barbosa MS, de Jesus FA et al (2020) Enzymatic transesterification of coconut oil by using immobilized lipase on biochar: an experimental and molecular docking study. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1992

    Article  PubMed  Google Scholar 

  24. Van der Borght J, Soetaert W, Desmet T (2012) Engineering the acceptor specificity of trehalose phosphorylase for the production of trehalose analogs. Biotechnol Prog 28:1257–1262. https://doi.org/10.1002/btpr.1609

    Article  CAS  PubMed  Google Scholar 

  25. Barbosa MS, Freire CCC, Almeida LC et al (2019) Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Biotechnol Appl Biochem 66:823–832. https://doi.org/10.1002/bab.1793

    Article  CAS  PubMed  Google Scholar 

  26. Andrade Mota D, dos Santos BM, Kleveston Schneider J et al (2021) Potential use of crude coffee silverskin oil in integrated bioprocess for fatty acids production. JAOCS, J Am Oil Chem Soc. https://doi.org/10.1002/aocs.12472

    Article  Google Scholar 

  27. Chen Y, Cheong LZ, Zhao J et al (2019) Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. Int J Biol Macromol 123:261–268. https://doi.org/10.1016/j.ijbiomac.2018.11.049

    Article  CAS  PubMed  Google Scholar 

  28. Brandão LM, d. S, Barbosa MS, Souza RL, et al (2020) Lipase activation by molecular bioimprinting: the role of interactions between fatty acids and enzyme active site. Biotechnol Prog. https://doi.org/10.1002/btpr.3064

    Article  PubMed  Google Scholar 

  29. Bhutada PR, Jadhav AJ, Pinjari DV et al (2016) Solvent assisted extraction of oil from Moringa oleifera Lam seeds. Ind Crops Prod 82:74–80. https://doi.org/10.1016/j.indcrop.2015.12.004

    Article  CAS  Google Scholar 

  30. Nadkarni R (2007) Guide to ASTM test methods for the analysis of petroleum products and lubricants, 2nd edn. ASTM International, West Conshohocken

    Google Scholar 

  31. Schrag JD, Li Y, Cygler M et al (1997) The open conformation of a Pseudomonas lipase. Structure 5:187–202. https://doi.org/10.1016/S0969-2126(97)00178-0

    Article  CAS  PubMed  Google Scholar 

  32. Brzozowski AM, Savage H, Verma CS et al (2000) Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry. https://doi.org/10.1021/bi0013905

    Article  PubMed  Google Scholar 

  33. Hermoso J, Pignol D, Kerfelec B et al (1996) Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem. https://doi.org/10.1074/jbc.271.30.18007

    Article  PubMed  Google Scholar 

  34. Berman HM, Battistuz T, Bhat TN et al (2002) The protein data bank. Acta Crystallogr Sect D Biol Crystallogr 58:899–907. https://doi.org/10.1107/S0907444902003451

    Article  CAS  Google Scholar 

  35. BIOVIA DS, (2016) Discovery studio modeling environment, release 2017. Dassault Systèmes, San Diego

    Google Scholar 

  36. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Trott O, Olson AJ (2010) Software news and update Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rooney D, Weatherley LR (2001) The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid-liquid reactor. Process Biochem 36:947–953. https://doi.org/10.1016/S0032-9592(01)00130-3

    Article  CAS  Google Scholar 

  39. Teixeira LF, Bôas RV, Oliveira PC, De Castro HF (2014) Effect of natural antioxidants on the lipase activity in the course of batch and continuous glycerolysis of babassu oil. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1144-2

    Article  PubMed  Google Scholar 

  40. Karmakar G, Ghosh P, Sharma B (2017) Chemically modifying vegetable oils to prepare green lubricants. Lubricants 5:44. https://doi.org/10.3390/lubricants5040044

    Article  Google Scholar 

  41. Gomna A, N’Tsoukpoe KE, Le Pierrès N, Coulibaly Y (2019) Review of vegetable oils behaviour at high temperature for solar plants: stability, properties and current applications. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2019.109956

    Article  Google Scholar 

  42. Negi S (2019) Green bio-processes. Springer, Singapore

    Google Scholar 

  43. Melani NB, Tambourgi EB, Silveira E (2020) Lipases: from production to applications. Sep Purif Rev. https://doi.org/10.1080/15422119.2018.1564328

    Article  Google Scholar 

  44. Javed S, Azeem F, Hussain S et al (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  45. Segall SD, Artz WE, Raslan DS et al (2004) Ouricuri (Syagrus coronata) triacylglycerol analysis using HPLC and positive ion electrospray tandem MS. JAOCS 81:143–149. https://doi.org/10.1007/s11746-004-0872-0

    Article  CAS  Google Scholar 

  46. Sánchez DA, Tonetto GM, Ferreira ML (2018) Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol Bioeng 115:6–24. https://doi.org/10.1002/bit.26458

    Article  CAS  PubMed  Google Scholar 

  47. Casas-Godoy L, Gasteazoro F, Duquesne S et al (2018) Lipases: an overview. Methods Mol Biol 1835:3–38

    Article  CAS  Google Scholar 

  48. Ramos-de-la-Peña AM, Aguilar O (2020) High pressure processing of lipase (Thermomyces lanuginosus): kinetics and structure assessment. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201900289

    Article  Google Scholar 

  49. Eremeev LN, Zaitsev SY (2016) Porcine pancreatic lipase as a catalyst in organic synthesis. Mini Rev Org Chem 13:78–85. https://doi.org/10.2174/1570193x13666160225000520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Adriano Aguiar Mendes from Departamento de Química, Universidade Federal de Alfenas, for help next step after this work. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES], Finance Code 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq]; and Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe [FAPITEC/SE].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleide M. F. Soares.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Ethical statement

The authors declare that there are no studies conducted with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2550 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de A. Rodrigues, C., Barbosa, M.S., dos Santos, J.C.B. et al. Computational and experimental analysis on the preferential selectivity of lipases for triglycerides in Licuri oil. Bioprocess Biosyst Eng 44, 2141–2151 (2021). https://doi.org/10.1007/s00449-021-02590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02590-y

Keywords

Navigation