Skip to main content
Log in

High cell density culture of recombinant E. coli in the miniaturized bubble columns

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Miniaturized bubble columns (MBCs) can provide mass transfer characteristics similar to stirred tank bioreactors. In this study, a new application was developed for MBCs to investigate the effect of feeding strategy and medium type on the fed-batch culture of recombinant E. coli. The results showed that the exponential feeding strategy and defined M9 medium were more suitable to achieve the high cell density culture (HCDC). The maximum obtained cell concentration in exponential feeding strategy in the defined medium without induction, was at OD600 of 169, while glucose concentration was maintained under 2 g/L. To the best of our knowledge, this cell concentration cannot be achieved in lab or pilot scale bubble columns. At the end of the process, adverse effect of the metabolic burden due to induction and mass transfer limitations decreased the obtained final cell concentration to OD600 of 116. Finally, a comparison of the results for fed-batch culture in the stirred tank bioreactor with those of the MBCs showed that their lower cell concentrations were due to the hydrodynamics limitations of MBCs. Yet, it was found that the MBCs are efficient tools in development of feeding strategies and evaluation of medium components for HCDC of recombinant E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Krause M, Neubauer A, Neubauer P (2016) The fed-batch principle for the molecular biology lab: controlled nutrient diets in ready-made media improve production of recombinant proteins in Escherichia coli. Microb Cell Fact 15(1):110. https://doi.org/10.1186/s12934-016-0513-8

    Article  CAS  Google Scholar 

  2. Schaepe S, Kuprijanov A, Simutis R, Lübbert A (2014) Avoiding overfeeding in high cell density fed-batch cultures of E. coli during the production of heterologous proteins. J Biotechnol 192:146–153

    Article  CAS  Google Scholar 

  3. Babaeipour V, Shojaosadati SA, Maghsoudi N (2013) Maximizing production of human interferon-γ in HCDC of recombinant E. coli. Iran J Pharm Res 12(3):563–572

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5(172):1–17

    Google Scholar 

  5. Davis R, Duane G, Kenny ST, Cerrone F, Guzik MW, Babu RP, Casey E, O’Connor KE (2015) High cell density cultivation of Pseudomonas putida KT2440 using glucose without the need for oxygen enriched air supply. Biotechnol Bioeng 112(4):725–733

    Article  CAS  Google Scholar 

  6. Shojaosadati SA, Varedi Kolaei SM, Babaeipour V, Farnoud AM (2008) Recent advances in high cell density cultivation for production of recombinant protein. Iran J Biotechnol 6(2):63–84

    CAS  Google Scholar 

  7. Babaeipour V, Mofid MR, Khanchezar S, Faraji F, Abolghasemi S (2017) Bench-scale overproduction and purification of recombinant GCSF in Escherichia coli fed-batch process. J Appl Pharm Sci 7(8):149–155

    CAS  Google Scholar 

  8. Doig SD, Ortiz-Ochoa K, Ward JM, Baganz F (2005) Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant kLa. Biotechnol Prog 21(4):1175–1182

    Article  CAS  Google Scholar 

  9. Ahmad I, Nawaz N, Darwesh NM, Ur Rahman S, Mustafa MZ, Khan SB, Patching SG (2018) Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Prot Expr Purif 144:12–18

    Article  CAS  Google Scholar 

  10. Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5(21):1–14

    Google Scholar 

  11. Glauche F, Glazyrina J, Bournazou MNC, Kiesewetter G, Cuda F, Goelling D, Raab A, Lang C, Neubauer P (2017) Detection of growth rate-dependent product formation in miniaturized parallel fed-batch cultivations. Eng Life Sci 17(11):1215–1220

    Article  CAS  Google Scholar 

  12. Kheradmandnia S, Hashemi-Najafabadi S, Shojaosadati SA, Mousavi SM, Malek Khosravi K (2015) Development of parallel miniature bubble column bioreactors for fermentation process. J Chem Technol Biotechnol 90(6):1051–1061

    Article  CAS  Google Scholar 

  13. Gill N, Appleton M, Baganz F, Lye G (2008) Design and characterisation of a miniature stirred bioreactor system for parallel microbial fermentations. Biochem Eng J 39(1):164–176

    Article  CAS  Google Scholar 

  14. Kim BJ, Diao J, Shuler ML (2012) Mini-scale bioprocessing systems for highly parallel animal cell cultures. Biotechnol Prog 28(3):595–607

    Article  CAS  Google Scholar 

  15. Patnaik PR (2015) Microbioreactors for cell cultures: analysis modeling, control, applications and beyond. Int J Bioautom 19(Suppl. 1):S1–S42

    CAS  Google Scholar 

  16. Moshtari B, Babakhani EG, Moghaddas JS (2009) Experimental study of gas hold-up and bubble behavior in gas-liquid bubble column. Pet Coal 51(1):27–32

    CAS  Google Scholar 

  17. Moshtari B, Moghaddas JS, Gangi E (2007) A hydrodynamic experimental study of slurry bubble column, studies in surface science and catalysis. Natural gas conversion VIII, proceedings of the 8th natural gas conversion symposium. Elsevier, Amsterdam, pp 67–72

    Chapter  Google Scholar 

  18. Shaikh A, Al-Dahhan M (2013) A new method for online flow regime monitoring in bubble column reactors via nuclear gauge densitometry. Chem Eng Sci 89:120–132

    Article  CAS  Google Scholar 

  19. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

  20. Babaeipour V, Shojaosadati SA, Robatjazi SM, Khalilzadeh R, Maghsoudi N (2007) Over-production of human interferon–γ by HCDC of recombinant Escherichia coli. Process Biochem 42:112–117

  21. Tripathi N (2009) High yield production of heterologous proteins with Escherichia coli. Def Sci J 59(2):137–146

    Article  CAS  Google Scholar 

  22. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536

    Article  CAS  Google Scholar 

  23. Tripathi NK (2016) Production and purification of recombinant proteins from Escherichia coli. ChemBioEng Rev 3(3):116–133

    Article  Google Scholar 

  24. Anane E, Neubauer P, Bournazou MNC (2017) Modelling overflow metabolism in Escherichia coli by acetate cycling. Biochem Eng J 125:23–30

    Article  CAS  Google Scholar 

  25. Babaeipour V, Khanchezar S, Mofid MR, Abbas MPH (2015) Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iran Biomed J 19:102–110

  26. Khanchezar S, Hashemi-Najafabadi S, Shojaosadati SA, Babaeipour V (2019) Hydrodynamics and mass transfer in miniaturized bubble column bioreactors. Bioprocess Biosyst Eng 42:257–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support by Tarbiat Modares University (Grant No: IG-39702) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameereh Hashemi-Najafabadi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanchezar, S., Hashemi-Najafabadi, S., Shojaosadati, S.A. et al. High cell density culture of recombinant E. coli in the miniaturized bubble columns. Bioprocess Biosyst Eng 44, 2075–2085 (2021). https://doi.org/10.1007/s00449-021-02584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02584-w

Keywords

Navigation