Skip to main content
Log in

Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol A in wastewater

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To prepare a robust biocatalyst and enhance the removal of bisphenol A in wastewater, succinic anhydride was reacted with laccase to obtain succinic anhydride-modified laccase (SA-laccase) and then co-crystallized with Cu3(PO4)2 to form SA-laccase@Cu3(PO4)2 hybrid nanoflowers (hNFs). The activity of SA-laccase@Cu3(PO4)2 reached 5.27 U/mg, 1.86-, 2.88- and 2.15-fold those of bare laccase@Cu3(PO4)2, laccase@Ca3(PO4)2 and laccase@epoxy resin, respectively. Compared with free laccase, the obtained hNFs present enhanced activity and tolerance to pH and high temperature in the removal of BPA. Under the optimum conditions of pH 6.0 and 35 °C, BPA removal reached 93.2% using SA-laccase@Cu3(PO4)2 hNFs, which was 1.21-fold of that using free laccase. In addition, the obtained SA-laccase@Cu3(PO4)2 hNFs retained nearly 90% of their initial catalytic activity for BPA removal after 8 consecutive batch cycles. This efficient method for preparing immobilized laccase can also be further developed and improved to acquire green biocatalysts for removing persistent organic pollutants in wastewater.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rahman MF, Yanful EK, Jasim SY (2009) Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: challenges in the context of the developing world. Desalination 248(1–3):578–585

    Article  CAS  Google Scholar 

  2. Loffredo E, Castellana G, Senesi N (2014) Decontamination of a municipal landfill leachate from endocrine disruptors using a combined sorption/bioremoval approach. Environ Sci Pollut Res 21(4):2654–2662

    Article  CAS  Google Scholar 

  3. Joseph L, Zaib Q, Khan IA, Berge ND, Park YG, Saleh NB, Yoon Y (2011) Removal of bisphenol A and 17 alpha-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes. Water Res 45(13):4056–4068

    Article  CAS  PubMed  Google Scholar 

  4. De Freitas EN, Bubna GA, Brugnari T, Kato CG, Nolli M, Rauen TG, Moreira R, Peralta RA, Bracht A, De Souza CGM, Peralta RM (2017) Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chem Eng J 330:1361–1369

    Article  CAS  Google Scholar 

  5. Dekant W, Voelkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134

    Article  CAS  PubMed  Google Scholar 

  6. Wang GH, Qi PR, Xue XF, Wu F, Deng NS (2007) Photodegradation of bisphenol Z by UV irradiation in the presence of beta-cyclodextrin. Chemosphere 67(4):762–769

    Article  CAS  PubMed  Google Scholar 

  7. Chen PJ, Linden KG, Hinton DE, Kashiwada S, Rosenfeldt EJ, Kullman SW (2006) Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation. Chemosphere 65(7):1094–1102

    Article  CAS  PubMed  Google Scholar 

  8. Deng B, Li YT, Tan WH, Wang ZX, Yu ZW, Xing SY, Lin H, Zhang H (2018) Degradation of bisphenol A by electro-enhanced heterogeneous activation of peroxydisulfate using Mn-Zn ferrite from spent alkaline Zn-Mn batteries. Chemosphere 204:178–185

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YM, Zhang DD, Zhou LC, Zhao YL, Chen J, Chen Z, Wang F (2018) Polypyrrole/reduced graphene oxide aerogel particle electrodes for high-efficiency electro-catalytic synergistic removal of Cr(VI) and bisphenol A. Chem Eng J 336:690–700

    Article  CAS  Google Scholar 

  10. Chan YY, Yue YN, Li YX, Webster RD (2013) Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents. Electrochim Acta 112:287–294

    Article  CAS  Google Scholar 

  11. Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22

    Article  CAS  Google Scholar 

  12. Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2(3):157–167

    Article  CAS  Google Scholar 

  13. Bernal C, Rodriguez K, Martinez R (2018) Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol Adv 36(5):1470–1480

    Article  CAS  PubMed  Google Scholar 

  14. Valencia D, Guillen M, Furst M, Lopez-Santin J, Alvaro G (2018) An immobilized and highly stabilized self-sufficient monooxygenase as biocatalyst for oxidative biotransformations. J Chem Technol Biotechnol 93(4):985–993

    Article  CAS  Google Scholar 

  15. Ge J, Lei JD, Zare RN (2012) Protein-inorganic hybrid nanoflowers. Nat Nanotechnol 7(7):428–432

    Article  CAS  PubMed  Google Scholar 

  16. Yu JY, Chen XX, Jiang M, Wang AM, Yang LL, Pei XL, Zhang PF, Wu SG (2018) Efficient promiscuous Knoevenagel condensation catalyzed by papain confined in Cu3(PO4)2 nanoflowers. RSC Adv 8(5):2357–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen YT, Hu SY, Chen DJ, Zhai HX, Bao ST, Lv TB (2019) An evaluation method of green development for chemical enterprises. Sustainability 11(22):6491

    Article  CAS  Google Scholar 

  18. Cui JD, Jia SR (2017) Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev 352:249–263

    Article  CAS  Google Scholar 

  19. Lei ZX, Gao CL, Chen L, He YT, Ma WD, Lin ZA (2018) Recent advances in biomolecule immobilization based on self-assembly: organic–inorganic hybrid nanoflowers and metal–organic frameworks as novel substrates. J Mater Chem B 6(11):1581–1594

    Article  CAS  PubMed  Google Scholar 

  20. Li ZX, Zhang YF, Su YC, Ouyang PK, Ge J, Liu Z (2014) Spatial co-localization of multi-enzymes by inorganic nanocrystal–protein complexes. Chem Commun 50(83):12465–12468

    Article  CAS  Google Scholar 

  21. Zhang BL, Li PT, Zhang HP, Wang H, Li XJ, Tian L, Ali N, Ali Z, Zhang QY (2016) Preparation of lipase/Zn-3(PO4)(2) hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem Eng J 291:287–297

    Article  CAS  Google Scholar 

  22. Brenna O, Bianchi E (1994) Immobilised laccase for phenolic removal in must and wine. Biotechnol Lett 16(1):35–40

    Article  CAS  Google Scholar 

  23. Hublik S (2000) Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme Microb Technol 27(3–5):330–336

    Article  CAS  PubMed  Google Scholar 

  24. Guzik U, Hupert-Kocurek K, Wojcieszynska D (2014) Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 19(7):8995–9018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Brugnari T, Pereira MG, Bubna GA, De Freitas EN, Contato AG, Correa RCG, Castoldi R, De Souza CGM, Polizeli M, Bracht A, Peralta RM (2018) A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci Total Environ 634:1346–1351

    Article  CAS  PubMed  Google Scholar 

  26. Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10(6):1457–1467

    Article  CAS  PubMed  Google Scholar 

  27. Barrios-Estrada C, Rostro-Alanis MD, Munoz-Gutierrez BD, Iqbal HMN, Kannan S, Parra-Saldivar R (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation—a review. Sci Total Environ 612:1516–1531

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Lv PF, Yao YX, Feng Q, Mensah A, Li DW, Wei QF (2020) A novel single-enzymatic biofuel cell based on highly flexible conductive bacterial cellulose electrode utilizing pollutants as fuel. Chem Eng J 379:122316

    Article  CAS  Google Scholar 

  29. Bilal M, Rasheed T, Nabeel F, Iqbal HMN, Zhao YP (2019) Hazardous contaminants in the environment and their laccase-assisted degradation—a review. J Environ Manag 234:253–264

    Article  CAS  Google Scholar 

  30. Taheran M, Naghdi M, Brar SK, Knystautas EJ, Verma M, Surampalli RY (2017) Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane. Sci Total Environ 605:315–321

    Article  PubMed  CAS  Google Scholar 

  31. Bilal M, Iqbal HMN, Barcelo D (2019) Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues—a review. Sci Total Environ 689:160–177

    Article  CAS  PubMed  Google Scholar 

  32. Fu MH, Xing JF, Ge ZQ (2019) Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. Sci Total Environ 651:2857–2865

    Article  CAS  PubMed  Google Scholar 

  33. Lassouane F, Ait-Amar H, Amrani S, Rodriguez-Couto S (2019) A promising laccase immobilization approach for bisphenol A removal from aqueous solutions. Bioresour Technol 271:360–367

    Article  CAS  PubMed  Google Scholar 

  34. Zdarta J, Antecka K, Frankowski R, Zgola-Grzeskowiak A, Ehrlich H, Jesionowski T (2018) The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. Sci Total Environ 615:784–795

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez-Fernandez M, Sanroman MA, Moldes D (2013) Recent developments and applications of immobilized laccase. Biotechnol Adv 31(8):1808–1825

    Article  CAS  PubMed  Google Scholar 

  36. D'souza S (1999) Immobilized enzymes in bioprocess. Curr Sci 77:69–79

  37. Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Fessner WD et al (eds) Biocatalysis-from discovery to application topics in current chemistry, vol 200. Springer, Berlin, Heidelberg

  38. Ardao I, Magnin D, Agathos SN (2015) Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals. Biotechnol Bioeng 112(10):1986–1996

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Wan J, Wu Q, Ma Y (2017) Chemical modification of laccase from Aspergillus oryzae and its application in OCC pulp. BioResources 12(1):673–683

    CAS  Google Scholar 

  40. Ren D, Zhang Y, Xu Q, Wang C, Wang T, Huang S, Zhang S (2013) Effects of chemical modification on laccase stability and degradation of indole. J Pure Appl Microbiol 7:765–770

    CAS  Google Scholar 

  41. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  42. Mota TR, Kato CG, Peralta RA, Bracht A, De Morais GR, Baesso ML, De Souza CGM, Peralta RM (2015) Decolourization of Congo red by Ganoderma lucidum laccase: evaluation of degradation products and toxicity. Water Air Soil Pollut 226(10):1–11

    Article  CAS  Google Scholar 

  43. Kimura Y, Takahashi A, Kashiwada A, Yamada K (2016) Removal of bisphenol A and its derivatives from aqueous medium through laccase-catalyzed treatment enhanced by addition of polyethylene glycol. Environ Technol 37(14):1733–1744

    Article  CAS  PubMed  Google Scholar 

  44. Ke C, Fan Y, Chen Y, Xu L, Yan Y (2016) A new lipase-inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv 6(23):19413–19416

    Article  CAS  Google Scholar 

  45. Wang A, Chen X, Yu J, Li N, Li H, Yin Y, Xie T, Wu SG (2020) Green preparation of lipase@Ca3(PO4)2 hybrid nanoflowers using bone waste from food production for efficient synthesis of clindamycin palmitate. J Ind Eng Chem 89:383–391

    Article  CAS  Google Scholar 

  46. Speight JG, Lange N (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New York

    Google Scholar 

  47. Habraken W, Tao JH, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PHH, Frederik PM, Laven J, Van Der Schoot P, Aichmayer B, De With G, Deyoreo JJ, Sommerdijk N (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4:1–12

    Article  CAS  Google Scholar 

  48. Amirkhani L, Moghaddas J, Jafarizadeh-Malmiri H (2016) Candida rugosa lipase immobilization on magnetic silica aerogel nanodispersion. RSC Adv 6(15):12676–12687

    Article  CAS  Google Scholar 

  49. Guin D, Gruebele M (2019) Weak chemical interactions that drive protein evolution: crowding, sticking, and quinary structure in folding and function. Chem Rev 119(18):10691–10717

    Article  CAS  PubMed  Google Scholar 

  50. Jiang M, Guo Z (2007) Effects of macromolecular crowding on the intrinsic catalytic efficiency and structure of enterobactin-specific isochorismate synthase. J Am Chem Soc 129(4):730–731

    Article  CAS  PubMed  Google Scholar 

  51. Lee SW, Cheon SA, Kim MI, Park TJ (2015) Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnol 13:54

    Article  CAS  Google Scholar 

  52. Rong J, Zhang T, Qiu FX, Rong XS, Zhu XL, Zhang XY (2016) Preparation of hierarchical micro/nanostructured Bi2S3-WO3 composites for enhanced photocatalytic performance. J Alloys Compd 685:812–819

    Article  CAS  Google Scholar 

  53. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  PubMed  Google Scholar 

  54. Marschelke C, Mueller M, Koepke D, Matura A, Sallat M, Synytska A (2019) Hairy particles with immobilized enzymes: impact of particle topology on the catalytic activity. ACS Appl Mater Interfaces 11(1):1645–1654

    Article  CAS  PubMed  Google Scholar 

  55. Xie M, Liu Y (2003) Studies on amide III infrared bands for the secondary structure determination of proteins. Chem J Chin Univ 24(2):226–231

    CAS  Google Scholar 

  56. Wang Z, Ren D, Yu H, Jiang S, Zhang S, Zhang X (2020) Study on improving the stability of adsorption-encapsulation immobilized Laccase@ZIF-67. Biotechnol Rep (Amst) 28:e00553–e00553

    Article  Google Scholar 

  57. Kadam AA, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Sharma B, Hyun S, Sung J-S (2020) Chitosan-grafted halloysite nanotubes-Fe3O4 composite for laccase-immobilization and sulfamethoxazole-degradation. Polymers 12(10):2221

    Article  CAS  PubMed Central  Google Scholar 

  58. Muthuvelu KS, Rajarathinam R, Selvaraj RN, Rajendren VB (2020) A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation. Int J Biol Macromol 152:1098–1107

    Article  PubMed  CAS  Google Scholar 

  59. Ramirez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cardenas-Chavez DL, Hernandez-Luna C, Demarche P, Enaud E, Garcia-Morales R, Agathos SN, Parra R (2014) Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Catal B Enzym 108:32–42

    Article  CAS  Google Scholar 

  60. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. J Biol Chem 277(40):37663–37669

    Article  CAS  PubMed  Google Scholar 

  61. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  62. Khaparde SS, Singhal RS (2001) Chemically modified papain for applications in detergent formulations. Bioresour Technol 78(1):1–4

    Article  CAS  PubMed  Google Scholar 

  63. Xiong Y, Gao J, Zheng J, Deng N (2011) Effects of succinic anhydride modification on laccase stability and phenolics removal efficiency. Chin J Catal 32(10):1584–1591

    Article  CAS  Google Scholar 

  64. Yang HL, Chen Y, Xin Y, Zhang L, Zhang YR, Wang W (2013) Chemically modified sepharose as support for the immobilization of cholesterol oxidase. J Microbiol Biotechnol 23(9):1212–1220

    Article  CAS  PubMed  Google Scholar 

  65. Arıca MY, Bayramoǧlu G, Bıçak N (2004) Characterisation of tyrosinase immobilised onto spacer-arm attached glycidyl methacrylate-based reactive microbeads. Process Biochem 39(12):2007–2017

    Article  CAS  Google Scholar 

  66. Bayramoglu G, Arica MY (2008) Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. J Hazard Mater 156(1–3):148–155

    Article  CAS  PubMed  Google Scholar 

  67. Yoon J, Liboiron BD, Sarangi R, Hodgson KO, Hedman B, Solomona EI (2007) The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc Natl Acad Sci USA 104(34):13609–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin J, Liu Y, Chen S, Le X, Zhou X, Zhao Z, Ou Y, Yang J (2016) Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Int J Biol Macromol 84:189–199

    Article  CAS  PubMed  Google Scholar 

  69. Li D-F, Ding H-C, Zhou T (2013) Covalent immobilization of mixed proteases, trypsin and chymotrypsin, onto modified polyvinyl chloride microspheres. J Agric Food Chem 61(44):10447–10453

    Article  CAS  PubMed  Google Scholar 

  70. Maurya SS, Nadar SS, Rathod VK (2020) Dual activity of laccase-lysine hybrid organic–inorganic nanoflowers for dye decolourization. Environ Technol Innov 19:100798

    Article  Google Scholar 

  71. Cui J, Zhao Y, Liu R, Zhong C, Jia S (2016) Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep 6:1–13

    CAS  Google Scholar 

  72. Piao MY, Zou DL, Yang YS, Ren XH, Qin CY, Piao YX (2019) Multi-functional laccase immobilized hydrogel microparticles for efficient removal of bisphenol A. Materials 12(5):704

    Article  CAS  PubMed Central  Google Scholar 

  73. Wang H, Liu Z-H, Zhang J, Huang R-P, Yin H, Dang Z, Wu P-X, Liu Y (2019) Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants. Sci Total Environ 692:107–116

    Article  CAS  PubMed  Google Scholar 

  74. Zhu P, Wang Y, Li G, Liu K, Liu Y, He J, Lei J (2019) Preparation and application of a chemically modified laccase and copper phosphate hybrid flower-like biocatalyst. Biochem Eng J 144:235–243

    Article  CAS  Google Scholar 

  75. Bhatnagar A, Anastopoulos L (2017) Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere 168:885–902

    Article  CAS  PubMed  Google Scholar 

  76. Hider RC, Liu ZD, Khodr HH (2001) Metal chelation of polyphenols. Methods Enzymol 335:190–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (22078079, 81730108), the Natural Science Foundation of Zhejiang Province (LY18B060009), the National Innovation and Entrepreneurship Training Program for Undergraduate (201810346008), the “Star and light” Project for Talent Students in Hangzhou Normal University (2019) and Research Plan for Sprout Talents in University in Zhejiang Province (2020R427071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Xie or Anming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., He, P., Yin, Y. et al. Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol A in wastewater. Bioprocess Biosyst Eng 44, 2061–2073 (2021). https://doi.org/10.1007/s00449-021-02583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02583-x

Keywords

Navigation