Skip to main content
Log in

Heterotrophic nitrification and related functional gene expression characteristics of Alcaligenes faecalis SDU20 with the potential use in swine wastewater treatment

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A new heterotrophic nitrifying bacterium was isolated from the compost of swine manure and rice husk and identified as Alcaligenes faecalis SDU20. Strain SDU20 had heterotrophic nitrification potential and could remove 99.7% of the initial NH4+–N. Nitrogen balance analysis revealed that 15.9 and 12.3% of the NH4+–N were converted into biological nitrogen and nitrate nitrogen, respectively. The remaining 71.44% could be converted into N2 or N2O. Single-factor experiments showed that the optimal conditions for ammonium removal were the carbon source of sodium succinate, C/N ratio 10, initial pH 8.0, and temperature 30 °C. Nitrification genes were determined to be upregulated when sodium succinate was used as the carbon source analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Strain SDU20 could tolerate 4% salinity and show resistance to some heavy metal ions. Strain SDU20 removed 72.6% high concentrated NH4+–N of 2000 mg/L within 216 h. In a batch experiment, the highest NH4+–N removal efficiency of 98.7% and COD removal efficiency of 93.7% were obtained in the treatment of unsterilized swine wastewater. Strain SDU20 is promising in high-ammonium wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen S, He S, Wu C, Du D (2019) Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment. J Biosci Bioeng 127(2):201–205. https://doi.org/10.1016/j.jbiosc.2018.07.025

    Article  CAS  PubMed  Google Scholar 

  2. Chen M, Wang W, Feng Y, Zhu X, Zhou H, Tan Z, Li X (2014) Impact resistance of different factors on ammonia removal by heterotrophic nitrification-aerobic denitrification bacterium Aeromonas sp. HN-02. Bioresour Technol 167:456–461. https://doi.org/10.1016/j.biortech.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  3. Khin T, Annachhatre AP (2004) Novel microbial nitrogen removal processes. Biotechnol Adv 22(7):519–532. https://doi.org/10.1016/j.biotechadv.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  4. Joo HS, Hirai M, Shoda M (2007) Improvement in ammonium removal efficiency in wastewater treatment by mixed culture of Alcaligenes faecalis no. 4 and L1. J Biosci Bioeng 103(1):66–73. https://doi.org/10.1263/jbb.103.66

    Article  CAS  PubMed  Google Scholar 

  5. Joo HS, Hirai M, Shoda M (2006) Piggery wastewater treatment using Alcaligenes faecalis strain no. 4 with heterotrophic nitrification and aerobic denitrification. Water Res 40(16):3029–3036. https://doi.org/10.1016/j.watres.2006.06.021

    Article  CAS  PubMed  Google Scholar 

  6. Zhu L, Ding W, Feng LJ, Kong Y, Xu J, Xu XY (2012) Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem. Bioresour Technol 108:1–7. https://doi.org/10.1016/j.biortech.2011.12.033

    Article  CAS  PubMed  Google Scholar 

  7. Chen Q, Ni J (2012) Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification. J Biosci Bioeng 113(5):619–623. https://doi.org/10.1016/j.jbiosc.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  8. Joo HS, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis no. 4. J Biosci Bioeng 100(2):184–191. https://doi.org/10.1263/jbb.100.184

    Article  CAS  PubMed  Google Scholar 

  9. Joo HS, Hirai M, Shoda M (2005) Nitrification and denitrification in high-strength ammonium by Alcaligenes faecalis. Biotechnol Lett 27(11):773–778. https://doi.org/10.1007/s10529-005-5634-9

    Article  CAS  PubMed  Google Scholar 

  10. Bai Y, Sun Q, Zhao C, Wen D, Tang X (2009) Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026. J Ind Microbiol Biotechnol 36(11):1391–1400. https://doi.org/10.1007/s10295-009-0625-9

    Article  CAS  PubMed  Google Scholar 

  11. Wang C, Liu S, Xu X, Zhang C, Wang D, Yang F (2018) Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor. Chemosphere 203:457–466. https://doi.org/10.1016/j.chemosphere.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  12. Bai Y, Sun Q, Zhao C, Wen D, Tang X (2008) Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001. Biodegradation 19(6):915–926. https://doi.org/10.1007/s10532-008-9193-3

    Article  CAS  PubMed  Google Scholar 

  13. Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, Miyauchi K, Endo G, Wakagi T, Shoun H (2010) Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl Environ Microbiol 76(14):4619–4625. https://doi.org/10.1128/AEM.01983-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao B, He YL, Hughes J, Zhang XF (2010) Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR. Bioresour Technol 101(14):5194–5200. https://doi.org/10.1016/j.biortech.2010.02.043

    Article  CAS  PubMed  Google Scholar 

  15. Zhao B, An Q, He YL, Guo JS (2012) N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresour Technol 116:379–385. https://doi.org/10.1016/j.biortech.2012.03.113

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Wu P, Hao B, Yu Z (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour Technol 102(21):9866–9869. https://doi.org/10.1016/j.biortech.2011.07.118

    Article  CAS  PubMed  Google Scholar 

  17. Gao J, Zhu T, Liu C, Zhang J, Gao J, Zhang J, Cai M, Li Y (2020) Ammonium removal characteristics of heterotrophic nitrifying bacterium Pseudomonas stutzeri GEP-01 with potential for treatment of ammonium-rich wastewater. Bioprocess Biosyst Eng 43(6):959–969. https://doi.org/10.1007/s00449-020-02292-x

    Article  CAS  PubMed  Google Scholar 

  18. Ji B, Yang K, Wang H, Zhou J, Zhang H (2015) Aerobic denitrification by Pseudomonas stutzeri C3 incapable of heterotrophic nitrification. Bioprocess Biosyst Eng 38(2):407–409. https://doi.org/10.1007/s00449-014-1271-9

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Hu T, Song Y, Chen H, Lv Y (2015) Heterotrophic nitrogen removal by Acinetobacter sp. Y1 isolated from coke plant wastewater. J Biosci Bioeng 120(5):549–554. https://doi.org/10.1016/j.jbiosc.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  20. Lei Y, Wang Y, Liu H, Xi C, Song L (2016) A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium. Appl Microbiol Biotechnol 100(9):4219–4229. https://doi.org/10.1007/s00253-016-7290-5

    Article  CAS  PubMed  Google Scholar 

  21. Yang M, Lu D, Qin B, Liu Q, Zhao Y, Liu H, Ma J (2018) Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11. Bioresour Technol 256:366–373. https://doi.org/10.1016/j.biortech.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Liang X, Jin Y, Wu C, Zhou R (2019) Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Klebsiella sp. TN-10. Appl Biochem Biotechnol 188(2):540–554. https://doi.org/10.1007/s12010-018-02932-9

    Article  CAS  PubMed  Google Scholar 

  23. Kundu P, Pramanik A, Mitra S, Choudhury JD, Mukherjee J, Mukherjee S (2012) Heterotrophic nitrification by Achromobacter xylosoxidans S18 isolated from a small-scale slaughterhouse wastewater. Bioprocess Biosyst Eng 35(5):721–728. https://doi.org/10.1007/s00449-011-0652-6

    Article  CAS  PubMed  Google Scholar 

  24. Zhou M, Ye H, Zhao X (2014) Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater. Biotechnol Bioprocess Eng 19(2):231–238. https://doi.org/10.1007/s12257-013-0580-1

    Article  CAS  Google Scholar 

  25. Chen J, Zheng J, Li Y, Hao HH, Chen JM (2015) Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification-aerobic denitrification. Appl Microbiol Biotechnol 99(24):10695–10702. https://doi.org/10.1007/s00253-015-6870-0

    Article  CAS  PubMed  Google Scholar 

  26. Jin R, Liu T, Liu G, Zhou J, Huang J, Wang A (2015) Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42. Appl Biochem Biotechnol 175(4):2000–2011. https://doi.org/10.1007/s12010-014-1406-0

    Article  CAS  PubMed  Google Scholar 

  27. Zhang QL, Liu Y, Ai GM, Miao LL, Zheng HY, Liu ZP (2012) The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour Technol 108:35–44. https://doi.org/10.1016/j.biortech.2011.12.139

    Article  CAS  PubMed  Google Scholar 

  28. Ren YX, Yang L, Liang X (2014) The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresour Technol 171:1–9. https://doi.org/10.1016/j.biortech.2014.08.058

    Article  CAS  PubMed  Google Scholar 

  29. Zhao B, Cheng DY, Tan P, An Q, Guo JS (2018) Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal. Bioresour Technol 250:564–573. https://doi.org/10.1016/j.biortech.2017.11.038

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Zhao B, An Q, Wang X, Zhang YX (2016) Kinetic characteristics and modelling of growth and substrate removal by Alcaligenes faecalis strain NR. Bioprocess Biosyst Eng 39(4):593–601. https://doi.org/10.1007/s00449-016-1541-9

    Article  CAS  PubMed  Google Scholar 

  31. Verstraete W, Alexander M (1972) Heterotrophic nitrifiction by Arthrobacter sp. J Bacteriol 110(3):955–961

    Article  CAS  Google Scholar 

  32. Chen L, Lin J, Pan D, Ren Y, Zhang J, Zhou B, Chen L, Lin J (2020) Ammonium removal by a newly isolated heterotrophic nitrification-aerobic denitrification bacteria Pseudomonas Stutzeri SDU10 and its potential in treatment of piggery wastewater. Curr Microbiol. https://doi.org/10.1007/s00284-020-02085-1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sun Z, Lv Y, Liu Y, Ren R (2016) Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresour Technol 220:142–150. https://doi.org/10.1016/j.biortech.2016.07.110

    Article  CAS  PubMed  Google Scholar 

  34. Li B, Lv R, Xiao Y, Hu W, Mai Y, Zhang J, Lin L, Hu X (2019) A novel nitrite-base aerobic denitrifying bacterium Acinetobacter sp. YT03 and its transcriptome analysis. Front Microbiol 10:2580. https://doi.org/10.3389/fmicb.2019.02580

    Article  PubMed  PubMed Central  Google Scholar 

  35. He X, Sun Q, Xu T, Dai M, Wei D (2019) Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04. Bioprocess Biosyst Eng 42(5):853–866. https://doi.org/10.1007/s00449-019-02088-8

    Article  CAS  PubMed  Google Scholar 

  36. Holt JH, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins

    Google Scholar 

  37. Yang JX, Zhao B, An Q, Huang YS, Guo JS (2018) Bioaugmentation with A. faecalis strain NR for achieving simultaneous nitrogen and organic carbon removal in a biofilm reactor. Bioresour Technol 247:871–880. https://doi.org/10.1016/j.biortech.2017.09.189

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Zhang S, Liu F, Luo P, Xiao R, Zhang M, Wu J (2020) The immobilized Alcaligenes faecalis strain WT14 for removing high strength nitrate and reducing nitrite accumulation. Environ Technol. https://doi.org/10.1080/09593330.2020.1780476

    Article  PubMed  Google Scholar 

  39. Chen J, Gu S, Hao H, Chen J (2016) Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Appl Microbiol Biotechnol 100(22):9787–9794. https://doi.org/10.1007/s00253-016-7840-x

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Wang Y, Li Y, An H, Lv Y (2015) Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16. Chin J Chem Eng 23(5):827–834. https://doi.org/10.1016/j.cjche.2014.04.005

    Article  CAS  Google Scholar 

  41. Xia L, Li X, Fan W, Wang J (2020) Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour Technol 301:122749. https://doi.org/10.1016/j.biortech.2020.122749

    Article  CAS  PubMed  Google Scholar 

  42. Lang X, Li Q, Ji M, Yan G, Guo S (2020) Isolation and niche characteristics in simultaneous nitrification and denitrification application of an aerobic denitrifier, Acinetobacter sp. YS2. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.122799

    Article  PubMed  Google Scholar 

  43. Chen Q, Ni J (2011) Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biotechnol 38(9):1305–1310. https://doi.org/10.1007/s10295-010-0911-6

    Article  CAS  PubMed  Google Scholar 

  44. Taylor SM, He Y, Zhao B, Huang J (2009) Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL. J Environ Sci 21(10):1336–1341. https://doi.org/10.1016/s1001-0742(08)62423-7

    Article  CAS  Google Scholar 

  45. Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int Biodeterior Biodegrad 78:67–73. https://doi.org/10.1016/j.ibiod.2013.01.001

    Article  CAS  Google Scholar 

  46. Khardenavis AA, Kapley A, Purohit HJ (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol 77(2):403–409. https://doi.org/10.1007/s00253-007-1176-5

    Article  CAS  PubMed  Google Scholar 

  47. Huang X, Li W, Zhang D, Qin W (2013) Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. Bioresour Technol 146:44–50. https://doi.org/10.1016/j.biortech.2013.07.046

    Article  CAS  PubMed  Google Scholar 

  48. Duan J, Fang H, Su B, Chen J, Lin J (2015) Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresour Technol 179:421–428. https://doi.org/10.1016/j.biortech.2014.12.057

    Article  CAS  PubMed  Google Scholar 

  49. Li C, Yang J, Wang X, Wang E, Li B, He R, Yuan H (2015) Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour Technol 182:18–25. https://doi.org/10.1016/j.biortech.2015.01.100

    Article  CAS  PubMed  Google Scholar 

  50. Yang J-R, Wang Y, Chen H, Lyu Y-K (2019) Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. Bioresour Technol 274:56–64. https://doi.org/10.1016/j.biortech.2018.10.052

    Article  CAS  PubMed  Google Scholar 

  51. Zhao B, Tian M, An Q, Ye J, Guo JS (2017) Characteristics of a heterotrophic nitrogen removal bacterium and its potential application on treatment of ammonium-rich wastewater. Bioresour Technol 226:46–54. https://doi.org/10.1016/j.biortech.2016.11.120

    Article  CAS  PubMed  Google Scholar 

  52. Huang F, Pan L, Lv N, Tang X (2017) Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification. J Biosci Bioeng 124(5):564–571. https://doi.org/10.1016/j.jbiosc.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  53. Wu Z, Xu F, Yang C, Su X, Guo F, Xu Q, Peng G, He Q, Chen Y (2019) Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: a molecular and electrochemical mechanism. Bioresour Technol 275:297–306. https://doi.org/10.1016/j.biortech.2018.12.058

    Article  CAS  PubMed  Google Scholar 

  54. Zhang M, Li A, Yao Q, Wu Q, Zhu H (2020) Nitrogen removal characteristics of a versatile heterotrophic nitrifying-aerobic denitrifying bacterium, Pseudomonas bauzanensis DN13-1, isolated from deep-sea sediment. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122626

    Article  PubMed  Google Scholar 

  55. Sudarno U, Winter J, Gallert C (2011) Effect of varying salinity, temperature, ammonia and nitrous acid concentrations on nitrification of saline wastewater in fixed-bed reactors. Bioresour Technol 102(10):5665–5673. https://doi.org/10.1016/j.biortech.2011.02.078

    Article  CAS  PubMed  Google Scholar 

  56. Silva LCF, Lima HS, Sartoratto A, Sousa MPd, Torres APR, Souza RSd, de Paula SO, Oliveira VMd, Silva CCd (2018) Effect of salinity in heterotrophic nitrification/aerobic denitrification performed by acclimated microbiota from oil-produced water biological treatment system. Int Biodeterior Biodegrad 130:1–7. https://doi.org/10.1016/j.ibiod.2018.03.009

    Article  CAS  Google Scholar 

  57. Yang LF, Jiang JQ, Zhao BS, Zhang B, Feng DQ, Lu WD, Wang L, Yang SS (2006) A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol Lett 255(1):89–95. https://doi.org/10.1111/j.1574-6968.2005.00055.x

    Article  CAS  PubMed  Google Scholar 

  58. Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981. https://doi.org/10.1128/AEM.01868-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kixmuller D, Greie JC (2012) Construction and characterization of a gradually inducible expression vector for Halobacterium salinarum, based on the kdp promoter. Appl Environ Microbiol 78(7):2100–2105. https://doi.org/10.1128/AEM.07155-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen Y, Wang Q, Zhao S, Yang W, Wang H, Jia W (2019) Removal of nutrients and emission of nitrous oxide during simultaneous nitrification, denitrification and phosphorus removal process with metal ions addition. Int Biodeterior Biodegrad 142:143–150. https://doi.org/10.1016/j.ibiod.2019.05.016

    Article  CAS  Google Scholar 

  61. Padhi SK, Maiti NK (2017) Molecular insight into the dynamic central metabolic pathways of Achromobacter xylosoxidans CF-S36 during heterotrophic nitrogen removal processes. J Biosci Bioeng 123(1):46–55. https://doi.org/10.1016/j.jbiosc.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  62. Silva LCF, Lima HS, Mendes TAO, Sartoratto A, Sousa MP, de Souza RS, de Paula SO, de Oliveira VM, Silva CC (2020) Physicochemical characterization of Pseudomonas stutzeri UFV5 and analysis of its transcriptome under heterotrophic nitrification/aerobic denitrification pathway induction condition. Sci Rep 10(1):2215. https://doi.org/10.1038/s41598-020-59279-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu C, Zhou Y, Zhang S, Xu M, Song J (2018) The effect of toxic carbon source on the reaction of activated sludge in the batch reactor. Chemosphere 194:784–792. https://doi.org/10.1016/j.chemosphere.2017.12.075

    Article  CAS  PubMed  Google Scholar 

  64. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53(Pt 5):1479–1483. https://doi.org/10.1099/ijs.0.02285-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project of Taishan Industry Leading Talent in Shandong province (LJNY201603), Research and Development project of China (2017YFC1701502, 2017YFC1701504, 2017YFC1702701), Taishan Scholar Project (ts201511107), National Survey of Traditional Chinese Medicine Resources (GZY-KJS-2018-004), Major Increase & Decrease Support Project at Central Level (2060302). The authors would like to thank Chengjia Zhang, Caiyun Sun, Nannan Dong, and Rui Wang from the Core Facilities for Life and Environmental Sciences, State Key Lab of Microbial Technology for help and guidance in sample analyses.

Funding

The funding for the research is the Project of Taishan Industry Leading Talent in Shandong province (LJNY201603).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LC, JL, DP, YR, JZ, BZ, LC, and JL. The first draft of the manuscript was written by LC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianqun Lin or Jianqiang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Chen, L., Pan, D. et al. Heterotrophic nitrification and related functional gene expression characteristics of Alcaligenes faecalis SDU20 with the potential use in swine wastewater treatment. Bioprocess Biosyst Eng 44, 2035–2050 (2021). https://doi.org/10.1007/s00449-021-02581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02581-z

Keywords

Navigation