Skip to main content

Advertisement

Log in

Hacking biofilm developed in a structured-bed reactor (SBRRIA) with integrated processes of nitrogen and organic matter removal

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biomass samples from a structured-bed reactor subjected to recirculation and intermittent aeration (SBRRIA) were analyzed to investigate the bacterial community shift along with the changes in the C/N ratio. The C/N ratios tested were 7.6 ± 1.0 (LNC) and 2.9 ± 0.4 (HNC). The massive sequencing analyses revealed that the microbial community adjusted itself to different organic and nitrogenous applied loads, with no harm to reactor performance regarding COD and Total-N removal. Under LNC, conventional nitrification and heterotrophic denitrification steered the process, as indicated by the detection of microorganisms affiliated with Nitrosomonadaceae, Nitrospiraceae, and Rhodocyclaceae families. However, under HNC, the C/N ratio strongly affected the microbial community, resulting in the prevalence of members of Saprospiraceae, Chitinophagaceae, Xanthomonadaceae, Comamonadaceae, Bacillaceae, and Planctomycetaceae. These families include bacteria capable of using organic matter derived from cell lysis, ammonia-oxidizers under low DO, heterotrophic nitrifiers–aerobic denitrifiers, and non-isolated strains of Anammox. The DO profile confirmed that the stratification in aerobic, anoxic, and anaerobic zones enabled the establishment of different nitrogen degradation pathways, including the Anammox.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Liu Y, Shi H, Xia L et al (2010) Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresour Technol 101:901–906. https://doi.org/10.1016/j.biortech.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  2. Chiu Y-C, Lee L-L, Chang C-N, Chao AC (2007) Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. Int Biodeterior Biodegradation 59:1–7. https://doi.org/10.1016/j.ibiod.2006.08.001

    Article  CAS  Google Scholar 

  3. Moura RB, Damianovic MHRZ, Foresti E (2012) Nitrogen and carbon removal from synthetic wastewater in a vertical structured-bed reactor under intermittent aeration. J Environ Manage 98:163–167. https://doi.org/10.1016/j.jenvman.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  4. Jin R-C, Yang G-F, Yu J-J, Zheng P (2012) The inhibition of the Anammox process: a review. Chem Eng J 197:67–79. https://doi.org/10.1016/j.cej.2012.05.014

    Article  CAS  Google Scholar 

  5. Pereira AD, Cabezas A, Etchebehere C et al (2017) Microbial communities in anammox reactors: a review. Environ Technol Rev 6:74–93. https://doi.org/10.1080/21622515.2017.1304457

    Article  CAS  Google Scholar 

  6. Jenni S, Vlaeminck SE, Morgenroth E, Udert KM (2014) Successful application of nitritation/anammox towastewater with elevated organic carbon to ammonia ratios. Water Res 49:316–326. https://doi.org/10.1016/j.watres.2013.10.073

    Article  CAS  PubMed  Google Scholar 

  7. Chen WH, Chiang YA, Huang YT et al (2017) Tertiary nitrogen removal using simultaneous partial nitrification, anammox and denitrification (SNAD) process in packed bed reactor. Int Biodeterior Biodegrad 120:36–42. https://doi.org/10.1016/j.ibiod.2017.01.037

    Article  CAS  Google Scholar 

  8. de Almeida RGB, dos Santos CED, Lüders TC et al (2018) Nitrogen removal by simultaneous partial nitrifi cation, anammox and denitrifi cation (SNAD) in a structured-bed reactor treating animal feed processing wastewater: Inhibitory effects and bacterial community. Int Biodeterior Biodegradation 133:108–115. https://doi.org/10.1016/j.ibiod.2018.06.019

    Article  CAS  Google Scholar 

  9. Liang Y, Li D, Zhang X et al (2014) Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresour Technol 169:103–109. https://doi.org/10.1016/j.biortech.2014.06.064

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez Guillén JA, Yimman Y, Lopez Vazquez CM et al (2014) Effects of organic carbon source, chemical oxygen demand/N ratio and temperature on autotrophic nitrogen removal. Water Sci Technol 69:2079–2084. https://doi.org/10.2166/wst.2014.128

    Article  CAS  PubMed  Google Scholar 

  11. Chamchoi N, Nitisoravut S, Schmidt JE (2008) Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresour Technol 99:3331–3336. https://doi.org/10.1016/j.biortech.2007.08.029

    Article  CAS  PubMed  Google Scholar 

  12. Moura RB, Santos CED, Okada DY et al (2018) Carbon-nitrogen removal in a structured-bed reactor (SBRRIA) treating sewage: operating conditions and metabolic perspectives. J Environ Manage 224:19–28. https://doi.org/10.1016/j.jenvman.2018.07.014

    Article  CAS  PubMed  Google Scholar 

  13. Silva BG, Damianovic MHRZ, Foresti E (2018) Effects of intermittent aeration periods on a structured-bed reactor continuously fed on the post-treatment of sewage anaerobic effluent. Bioprocess Biosyst Eng 20:1–6. https://doi.org/10.1007/s00449-018-1940-1

    Article  CAS  Google Scholar 

  14. Oliveira EP, Souza TSO, Okada DY et al (2020) Effect of air flow, intermittent aeration time and recirculation ratio in the hydrodynamic behavior of a structured bed reactor. Chem Eng J 394:124988. https://doi.org/10.1016/j.cej.2020.124988

    Article  CAS  Google Scholar 

  15. Barana AC, Lopes DD, Martins TH et al (2013) Nitrogen and organic matter removal in an intermittently aerated fixed-bed reactor for post-treatment of anaerobic effluent from a slaughterhouse wastewater treatment plant. J Environ Chem Eng 1:453–459. https://doi.org/10.1016/j.jece.2013.06.015

    Article  CAS  Google Scholar 

  16. Wosiack PA, Lopes DD, Rissato Zamariolli Damianovic MH et al (2015) Removal of COD and nitrogen from animal food plant wastewater in an intermittently-aerated structured-bed reactor. J Environ Manage 154:145–150. https://doi.org/10.1016/j.jenvman.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  17. Santos CED, Moura RB, Damianovic MHRZ, Foresti E (2016) Influence of COD/N ratio and carbon source on nitrogen removal in a structured-bed reactor subjected to recirculation and intermittent aeration (SBRRIA). J Environ Manage 166:519–524. https://doi.org/10.1016/j.jenvman.2015.10.054

    Article  CAS  PubMed  Google Scholar 

  18. Park S, Yu J, Byun I et al (2011) Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions. Bioresour Technol 102:7265–7271. https://doi.org/10.1016/j.biortech.2011.04.091

    Article  CAS  PubMed  Google Scholar 

  19. Fitzgerald CM, Camejo P, Oshlag JZ, Noguera DR (2015) Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res 70:38–51. https://doi.org/10.1016/j.watres.2014.11.041

    Article  CAS  PubMed  Google Scholar 

  20. Van de Graaf AA, De BP, Robertson LA et al (1996) Autotrophic growth of anaerobic am monium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196

    Article  Google Scholar 

  21. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478. https://doi.org/10.4319/lo.1989.34.2.0474

    Article  CAS  Google Scholar 

  22. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491. https://doi.org/10.1128/AEM.66.12.5488-5491.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  24. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:1–7. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  25. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brenner DJ, Krieg NR, Staley JT (2005) The Proteobacteria (volume 2). In: G. M. Garrity (ed) Bergey’s Manual of Systematic Bacteriology. Springer, New York

  30. Daims H, Nielsen JL, Nielsen PH et al (2001) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284. https://doi.org/10.1128/AEM.67.11.5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Show KY, Lee DJ, Pan X (2013) Simultaneous biological removal of nitrogen-sulfur-carbon: recent advances and challenges. Biotechnol Adv 31:409–420. https://doi.org/10.1016/j.biotechadv.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  32. Jetten MS, Op den Camp H, Kuenen G, Strous M (2010) "Candidatus Brocadiales” ord. nov. In: Krieg NR, Ludwig W, Whitman WB et al (eds) Bergey’s Manual of Systematic Bacteriology, Second. Springer, Ne York, pp 918–926

    Google Scholar 

  33. Lotti T, Van Der SWRL, Kleerebezem R et al (2012) The effect of nitrite inhibition on the anammox process The effect of nitrite inhibition on the anammox process. Water Res 46:2559–2569. https://doi.org/10.1016/j.watres.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez-Gil G, Sougrat R, Behzad AR et al (2015) Microbial community composition and ultrastructure of granules from a full-scale anammox reactor. Environ Microbiol 70:118–131. https://doi.org/10.1007/s00248-014-0546-7

    Article  CAS  Google Scholar 

  35. Park H, Rosenthal A, Ramalingam K et al (2010) Linking community profiles, gene expression and N-removal in anammox bioreactors treating municipal anaerobic digestion reject water. Environ Sci Technol 44:6110–6116

    Article  CAS  Google Scholar 

  36. Gonzalez-Martinez A, Rodriguez-Sanchez A, Lotti T et al (2015) Bacterial community structure of a lab-scale anammox membrane bioreactor. Biotechnol Prog 31:186–193. https://doi.org/10.1002/btpr.1995

    Article  CAS  PubMed  Google Scholar 

  37. Cao S, Du R, Li B et al (2016) High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater. Appl Microbiol Biotechnol 100:6457–6467. https://doi.org/10.1007/s00253-016-7427-6

    Article  CAS  PubMed  Google Scholar 

  38. Hoshino T, Terahara T, Yamada K et al (2006) Long-term monitoring of the succession of a microbial community in activated sludge from a circulation flush toilet as a closed system. FEMS Microbiol Ecol 55:459–470. https://doi.org/10.1111/j.1574-6941.2005.00047.x

    Article  CAS  PubMed  Google Scholar 

  39. Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:1897–1905. https://doi.org/10.1128/AEM.03527-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang B, Xu X, Zhu L (2018) Activated sludge bacterial communities of typical wastewater treatment plants: distinct genera identification and metabolic potential differential analysis. AMB Express 8:. https://doi.org/https://doi.org/10.1186/s13568-018-0714-0

  41. McIlroy SJ, Nielsen PH (2014) The family saprospiraceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 863–889

    Google Scholar 

  42. Kim MK, Jung H-Y (2007) Chitinophaga terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:1721–1724. https://doi.org/10.1099/ijs.0.64964-0

    Article  PubMed  Google Scholar 

  43. Krieg NR, Staley JT, Brown DR, et al (2010) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes (volume 4). In: Bergey’s Manual of Systematic Bacteriology. NewYork, p 949

  44. Wang D, Li T, Huang K et al (2019) Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal. Sci Total Environ 655:1355–1363. https://doi.org/10.1016/j.scitotenv.2018.11.321

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Lei Z, Wang L et al (2020) Insight into using up-flow anaerobic sludge blanket-anammox to remove nitrogen from an anaerobic membrane reactor during mainstream wastewater treatment. Bioresour Technol 314:123710. https://doi.org/10.1016/j.biortech.2020.123710

    Article  CAS  PubMed  Google Scholar 

  46. Dolinšek J, Lagkouvardos I, Wanek W et al (2013) Interactions of nitrifying bacteria and heterotrophs: Identification of a Micavibrio-like putative predator of Nitrospira spp. Appl Environ Microbiol 79:2027–2037. https://doi.org/10.1128/AEM.03408-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okada DY, Costa RB, de Garcia C, CB, et al (2020) Anoxic microbial community robustness under variation of hydraulic retention time and availability of endogenous electron donors. Appl Biochem Biotechnol 192:443–454. https://doi.org/10.1007/s12010-020-03327-5

    Article  CAS  PubMed  Google Scholar 

  48. Willems A (2014) The family comamonadaceae. In: Rosenberg E, DeLong EF, Lory S et al (eds) The Prokaryotes: alphaproteobacteria and betaproteobacteria. Springer-Verlag, Berlin Heidelberg, Berlin, pp 778–851

    Google Scholar 

  49. Chen Q, Ni J (2011) Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biotechnol 38:1305–1310. https://doi.org/10.1007/s10295-010-0911-6

    Article  CAS  PubMed  Google Scholar 

  50. Xia J, Ye L, Ren H, Zhang XX (2018) Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biotechnol 102:3967–3979. https://doi.org/10.1007/s00253-018-8905-9

    Article  CAS  PubMed  Google Scholar 

  51. Khramenkov SV, Kozlov MN, Kevbrina MV et al (2013) A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology 82:628–636. https://doi.org/10.1134/S002626171305007X

    Article  CAS  Google Scholar 

  52. Dedysh SN, Kulichevskaya IS, Beletsky A V, et al (2020) Lacipirellula parvula gen . nov ., sp . nov ., representing a lineage of planctomycetes widespread in low-oxygen habitats , description of the family Lacipirellulaceae fam . nov . and proposal of the orders. Syst Appl Microbiol 43:126050. https://doi.org/https://doi.org/10.1016/j.syapm.2019.126050

  53. Rios-Del Toro EE, Cervantes FJ (2019) Anaerobic ammonium oxidation in marine environments: contribution to biogeochemical cycles and biotechnological developments for wastewater treatment. Rev Environ Sci Biotechnol 18:11–27. https://doi.org/10.1007/s11157-018-09489-3

    Article  CAS  Google Scholar 

  54. Yoshinaga I, Amano T, Yamagishi T et al (2011) Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater Lake, Lake kitaura, Japan. Microbes Environ 26:189–197. https://doi.org/10.1264/jsme2.ME10184

    Article  PubMed  Google Scholar 

  55. Yue X, Yu G, Liu Z et al (2018) Start-up of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter and the effect of inorganic carbon on nitrogen removal and microbial activity. Bioresour Technol 254:347–352. https://doi.org/10.1016/j.biortech.2018.01.107

    Article  CAS  PubMed  Google Scholar 

  56. Sànchez-Melsió A, Cáliz J, Balaguer MD et al (2009) Development of batch-culture enrichment coupled to molecular detection for screening of natural and man-made environments in search of anammox bacteria for N-removal bioreactors systems. Chemosphere 75:169–179. https://doi.org/10.1016/j.chemosphere.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  57. Egli K, Bosshard F, Werlen C et al (2003) Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microb Ecol 45:419–432. https://doi.org/10.1007/s00248-002-2037-5

    Article  CAS  PubMed  Google Scholar 

  58. Strous M, Jetten M (1997) Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing ( Anammox ) Sludge. 63:2446–2448

  59. Chen H, Liu S, Yang F et al (2009) The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresour Technol 100:1548–1554. https://doi.org/10.1016/j.biortech.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  60. Daverey A, Su SH, Huang YT et al (2013) Partial nitrification and anammox process: a method for high strength optoelectronic industrial wastewater treatment. Water Res 47:2929–2937. https://doi.org/10.1016/j.watres.2013.01.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil) (Processes 2013/15665-8 and 2015/21650-9). The authors especially thank the Technician Antônio Wagner Lamon from Laboratory of Microsensors in the São Carlos School of Engineering (EESC/USP, Brazil) for constructing the DO microsensor and performing this analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Eloísa Diniz dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C.E.D., Costa, R.B., Rabelo, C.A.B.S. et al. Hacking biofilm developed in a structured-bed reactor (SBRRIA) with integrated processes of nitrogen and organic matter removal. Bioprocess Biosyst Eng 44, 1841–1851 (2021). https://doi.org/10.1007/s00449-021-02564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02564-0

Keywords

Profiles

  1. Gabriela Felix Persinoti