Skip to main content
Log in

Facile synthesis of catalase@ZIF-8 composite by biomimetic mineralization for efficient biocatalysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Enzymes immobilized in metal–organic frameworks (MOFs) have attracted great attention as a promising hybrid material. In the study, a novel biomimetic mineralization encapsulation process for a highly stable and easily reusable catalase (CAT)@ZIF-8 composite has been designed. This immobilization process provides a high enzyme loading of 70 wt %. The CAT@ZIF-8 composites exhibited a much lower Km value and better enzyme activity than those of free CAT, exhibiting good stability against enzymatic hydrolysis and protein denaturation under harsh conditions. The inhibitory effects of pesticides such as pH, temperature, solvent (i.e., methanol, dimethyl sulfoxide and tetrahydrofuran) and storage at room temperature (6 months) on the activity of free and immobilized catalase enzyme were investigated. The CAT@MOF composites also exhibited excellent reusability, an obvious advantage for treating a wastewater from food processing. The CAT@MOF developed is promising for the efficient removal of H2O2 under harsh conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhong W, Shen S, He M, Wang D, Wang Z, Lin Z, Tu W, Yu J (2019) The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl Catal B Environ 258:117967–117973. https://doi.org/10.1016/j.apcatb.2019.117967

    Article  CAS  Google Scholar 

  2. Zhong W, Shen S, Feng S, Lin Z, Wang Z, Fang B (2018) Facile fabrication of alveolate Cu2−xSe microsheets as a new visible-light photocatalyst for discoloration of Rhodamine B. CrystEngComm 20:7851–7856. https://doi.org/10.1039/C8CE01534A

    Article  CAS  Google Scholar 

  3. Zhong W, Lin Z, Feng S, Wang D, Shen S, Zhang Q, Gu L, Wang Z, Fang B (2019) Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale 11:4407–4413. https://doi.org/10.1039/C8NR10163A

    Article  CAS  PubMed  Google Scholar 

  4. Zhong W, Tu W, Feng S, Xu A (2019) Photocatalytic H2 evolution on CdS nanoparticles by loading FeSe nanorods as co-catalyst under visible light irradiation. J Alloy Compound 772:669–674. https://doi.org/10.1016/j.jallcom.2018.09.145

    Article  CAS  Google Scholar 

  5. Liao G, Gong Y, Zhang L, Gao H, Fang B (2019) Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ Sci 12:2080–2147. https://doi.org/10.1039/C9EE00717B

    Article  CAS  Google Scholar 

  6. Erol K, Cebeci BK, Köse K, Köse DA (2019) Effect of immobilization on the activity of catalase carried by poly(HEMA-GMA) cryogels. Int J Biol Macromol 123:738–743. https://doi.org/10.1016/j.ijbiomac.2018.11.121

    Article  CAS  PubMed  Google Scholar 

  7. Cui J, Feng Y, Jia S (2018) Silica encapsulated catalase@metal-organic framework composite: a highly stable and recyclable biocatalyst. Chem Eng J 351:506–514. https://doi.org/10.1016/j.cej.2018.06.121

    Article  CAS  Google Scholar 

  8. Badieyan S, Wang Q, Zou X, Li Y, Herron M, Abbott NL, Chen Z, Marsh EN (2017) Engineered surface-immobilized enzyme that retains high levels of catalytic activity in air. J Am Chem Soc 139:2872–2875. https://doi.org/10.1021/jacs.6b12174

    Article  CAS  PubMed  Google Scholar 

  9. Gong A, Zhu CT, Xu Y, Wang FQ, Wang J (2017) Moving and unsinkable graphene sheets immobilized enzyme for microfluidic biocatalysis. Sci Rep 4309:7. https://doi.org/10.1038/s41598-017-04216-4

    Article  CAS  Google Scholar 

  10. Safdar M, Sproß J, Jänis J (2014) Microscale immobilized enzyme reactors in proteomics: latest developments. J Chromatogr A 1324:1–10. https://doi.org/10.1016/j.chroma.2013.11.045

    Article  CAS  PubMed  Google Scholar 

  11. Zhu S, Wang X, Jing C, Yin Y, Zhou N (2019) A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme. Microchim Acta 186:176. https://doi.org/10.1007/s00604-019-3244-9

    Article  CAS  Google Scholar 

  12. Zhuang W, Huang J, Liu X, Ge L, Niu H, Wang Z, Wu J, Yang P, Chewn Y, Ying H (2019) Co-localization of glucose oxidase and catalase enabled by a self-assembly approach: matching between molecular dimensions and hierarchical pore sizes. Food Chem 275:197–205. https://doi.org/10.1016/j.foodchem.2018.09.077

    Article  CAS  PubMed  Google Scholar 

  13. Leichner C, Menzel C, Laffleur F, Bernkop-Schnürch A (2017) Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). Int J Pharmaceut 530:346–353. https://doi.org/10.1016/j.ijpharm.2017.08.059

    Article  CAS  Google Scholar 

  14. Cui J, Sun B, Lin T, Feng Y, Jia S (2018) Enzyme shielding by mesoporous organosilica shell on Fe3O4@silica yolk-shell nanospheres. Int J Biol Macromol 117:673–682. https://doi.org/10.1016/j.ijbiomac.2018.05.227

    Article  CAS  PubMed  Google Scholar 

  15. Canbolat MF, Savas HB, Gultekin F (2017) Improved catalytic activity by catalase immobilization using γ-cyclodextrin and electrospun PCL nanofibers. J Appl Polym Sci 134:44404. https://doi.org/10.1002/app.44404

    Article  CAS  Google Scholar 

  16. Cui J, Feng Y, Lin T, Zhong C, Jia S (2017) Mesoporous metal–organic framework with well-defined cruciate flower-like morphology for enzyme immobilization. ACS Appl Mater Inter 9:10587–10594. https://doi.org/10.1021/acsami.7b00512

    Article  CAS  Google Scholar 

  17. Shen X, Yang M, Cui C, Cao H (2019) In situ immobilization of glucose oxidase and catalase in a hybrid interpenetrating polymer network by 3D bioprinting and its application. Colloid Surface A 568:411–418. https://doi.org/10.1016/j.colsurfa.2019.02.021

    Article  CAS  Google Scholar 

  18. Pudlarz AM, Czechowska E, Ranoszek-Soliwoda K, Tomaszewska E, Celichowski G, Grobelny J, Szemraj J (2018) Immobilization of recombinant human catalase on gold and silver nanoparticles. Appl Biochem Biotechnol 185:717–735. https://doi.org/10.1007/s12010-017-2682-2

    Article  CAS  PubMed  Google Scholar 

  19. Kawachi Y, Kugimiya S, Nakamura H, Kato K (2014) Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity. Appl Surf Sci 314:64–70. https://doi.org/10.1016/j.apsusc.2014.06.150

    Article  CAS  Google Scholar 

  20. Barouni E, Petsi T, Kanellaki M, Bekatorou A, Koutinas A (2015) Tubular cellulose/starch gel composite as food enzyme storehouse. Food Chem 188:106–110. https://doi.org/10.1016/j.foodchem.2015.04.038

    Article  CAS  PubMed  Google Scholar 

  21. Lian X, Fang Y, Joseph E, Wang Q, Li J, Banerjee S, Lollar C, Wang X, Zhou HC (2017) Enzyme-MOF (metal–organic framework) composites. Chem Soc Rev 46:3341–3386. https://doi.org/10.1039/C7CS00058H

    Article  Google Scholar 

  22. Zhou HJ, Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43:5415–5418. https://doi.org/10.1039/c4cs90059f

    Article  CAS  PubMed  Google Scholar 

  23. Luo S, Wang J (2018) MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. Environ Sci Pollut Res 25:5521–5528. https://doi.org/10.1007/s11356-017-0932-z

    Article  CAS  Google Scholar 

  24. Yoon JW, Kim DH, Kim J, Jang HW, Lee J (2019) NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting. Appl Catal B Environ 244:511–518. https://doi.org/10.1016/j.apcatb.2018.11.057

    Article  CAS  Google Scholar 

  25. Kuwahara Y, Kango H, Yamashita H (2016) Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over sulfonic acid-functionalized UiO-66. ACS Sustain Chem Eng 5:1141–1152. https://doi.org/10.1021/acssuschemeng.6b02464

    Article  CAS  Google Scholar 

  26. Hu GB, Xiong CY, Liang WB, Zeng XS, Xu HL, Yang Y, Yao LY, Yuan R, Xiao DR (2018) Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl Mater Inter 10:15913–15919. https://doi.org/10.1021/acsami.8b05038

    Article  CAS  Google Scholar 

  27. Zhu N, Zou Y, Huang M, Dong S, Wu X, Liang G, Han Z, Zhen Z (2018) A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples. Talanta 186:104–109. https://doi.org/10.1016/j.talanta.2018.04.023

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Li P, Modica JA, Drout RJ, Farha OK (2018) Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J Am Chem Soc 140:5678–5681. https://doi.org/10.1021/jacs.8b02089

    Article  CAS  PubMed  Google Scholar 

  29. Gkaniatsou E, Sicard C, Ricoux R, Mahy JP, Steunou N, Serre C (2017) Metal–organic frameworks: a novel host platform for enzymatic catalysis and detection. Mater Horiz 4:55–63. https://doi.org/10.1039/C6MH00312E

    Article  CAS  Google Scholar 

  30. Nadar SS, Rathod VK (2018) Magnetic-metal organic framework (magnetic-MOF): a novel platform for enzyme immobilization and nanozyme applications. Int J Biol Macromol 120:2293–2302. https://doi.org/10.1016/j.ijbiomac.2018.08.126

    Article  CAS  PubMed  Google Scholar 

  31. Nadar SS, Rathod VK (2020) Immobilization of proline activated lipase within metal organic framework (MOF). Int J Biol Macromol 108:11–20. https://doi.org/10.1016/j.ijbiomac.2019.10.199

    Article  CAS  Google Scholar 

  32. Bagheri N, Khataee A, Hassanzadeh J, Habibi B (2018) Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite. J Hazard Mater 360:233–242. https://doi.org/10.1016/j.jhazmat.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  33. Gascón V, Jiménez MB, Blanco RM, Sanchez-Sanchez M (2018) Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization. Catal Today 304:119–126. https://doi.org/10.1016/j.cattod.2017.10.022

    Article  CAS  Google Scholar 

  34. Qi B, Luo J, Wan Y (2018) Immobilization of cellulase on a core-shell structured metal–organic framework composites: better inhibitors tolerance and easier recycling. Bioresour Technol 268:577–582. https://doi.org/10.1016/j.biortech.2018.07.115

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Lan PC, Ma S (2020) Metal-organic frameworks for enzyme immobilization: beyond host matrix materials. Acs Central Sci 6(9):1497–1506. https://doi.org/10.1021/acscentsci.0c00687

    Article  CAS  Google Scholar 

  36. Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal–organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240. https://doi.org/10.1038/ncomms8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liang Q, Luo Z, Lu X (2019) Biomimetic mineralization inducing lipase−metal−organic framework nanocomposite for pickering interfacial biocatalytic system. ACS Sustainable Chem Eng 7:7127–7139. https://doi.org/10.1021/acssuschemeng.9b00113

    Article  CAS  Google Scholar 

  38. Pei X, Wu Y, Wang J, Chen Z, Liu W, Sub W, Liu F (2020) Biomimetic mineralization of nitrile hydratase into a mesoporous cobalt-based metal–organic framework for efficient biocatalysis. Nanoscale 12:967–972. https://doi.org/10.1039/c9nr06470b

    Article  CAS  PubMed  Google Scholar 

  39. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. https://doi.org/10.1126/science.1067208

    Article  CAS  PubMed  Google Scholar 

  40. Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211. https://doi.org/10.1038/nature06900

    Article  CAS  PubMed  Google Scholar 

  41. Glorieux C (2017) Calderon PB (2017) Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 398:1095–1108. https://doi.org/10.1515/hsz-2017-0131

    Article  CAS  PubMed  Google Scholar 

  42. Nabipour H, Sadr MH, Bardajee GR (2017) Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J Chem 41:364–7370. https://doi.org/10.1039/C7NJ00606C

    Article  Google Scholar 

  43. Hu M, Yin L, Low N, Ji D, Xing W (2020) Zeolitic-imidazolate-framework filled hierarchical porous nanofiber membrane for air cleaning. J Membrane Sci 594:117467. https://doi.org/10.1016/j.memsci.2019.117467

    Article  CAS  Google Scholar 

  44. Liang W, Xu H, Carraro F, Maddigan NK, Li Q, Bell SG, Huang DM, Tarzia A, Solomon MB, Amenitsch H, Vaccari L, Sumby CJ, Falcaro P, Doonan CJ (2019) Enhanced activity of enzymes encapsulated in hydrophilic metal–organic frameworks. J Am Chem Soc 141(6):2348–2355. https://doi.org/10.1021/jacs.8b10302

    Article  CAS  PubMed  Google Scholar 

  45. Wang K, Li C, Liang Y, Han T, Huang H, Yang Q, Liu D, Zhong C (2016) Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chem Eng J 289:486–493. https://doi.org/10.1016/j.cej.2016.01.019

    Article  CAS  Google Scholar 

  46. Singh S, Sharma S, Umar A, Jha M, Mehta S, Kansal S (2018) Nanocuboidal-shaped zirconium based metal organic framework for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase. New J Chem 42:1921–1930. https://doi.org/10.1039/C7NJ03851H

    Article  CAS  Google Scholar 

  47. Jiang Y, Zhai J, Zhou L, He Y, Ma L, Gao J (2018) Enzyme@silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability. Biochem Eng J 132:196–205. https://doi.org/10.1016/j.bej.2018.01.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support from National Natural Science Foundation of China (No: 31270620), Fundamental Research Funds for the Central Universities (No. DUT19JC13) and Dalian Scientific and Technological Innovation Foundation (No: 2018J12SN072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Xu, Z., Zhang, W. et al. Facile synthesis of catalase@ZIF-8 composite by biomimetic mineralization for efficient biocatalysis. Bioprocess Biosyst Eng 44, 1309–1319 (2021). https://doi.org/10.1007/s00449-021-02540-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02540-8

Keywords

Navigation