Skip to main content

Advertisement

Log in

Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) are considered as very significant and essential material due to its multifunctional properties, stability, low cost and wide usage. Many green and biogenic approaches for ZnO NPs synthesis have been reported using various sources such as plants and microorganisms. Plants contain biomolecules that can act as capping, oxidizing and reducing agents that increase the rate of reaction and stabilizes the NPs. This review emphasizes and compiles different types of plants and parts of plant used for the synthesis of ZnO and its potential applications at one place. The influence of biogenic and phytogenic synthesized ZnO on its properties and possible mechanisms for its fabrication has been discussed. This review also highlights the potential applications and future prospects of phytogenic synthesized ZnO in the field of energy production and storage, sun light harvesting, environmental remediation, and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

This manuscript does not have any raw/processed data to share because this is a review manuscript.

References

  1. Hernández-Ramírez A, Medina-Ramírez I (2015) Photocatalytic semiconductors. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-10999-2.

  2. Velmurugan R, Incharoensakdi A (2018) Nanoparticles and organic matter. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811487-2.00018-9.

  3. Zhang Y, Bian T, Gu J, Zheng X, Li Z (2018) Controllable ZnO architectures with the assistance of ethanolamine and their application for removing divalent heavy metals (Cu, Pb, Ni) from water. New J Chem 42:3356–3362. https://doi.org/10.1039/c7nj04669c

    Article  CAS  Google Scholar 

  4. Chauhan AK, Kataria N, Garg VK (2020) Green fabrication of ZnO nanoparticles using Eucalyptus spp. leaves extract and their application in wastewater remediation. Chemosphere 247:125803. https://doi.org/10.1016/j.chemosphere.2019.125803

    Article  CAS  PubMed  Google Scholar 

  5. Kahsay MH, Tadesse A, RamaDevi D, Belachew N, Basavaiah K (2019) Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv 9:36967–36981. https://doi.org/10.1039/C9RA07630A

    Article  CAS  Google Scholar 

  6. Nilavukkarasi M, Vijayakumar S, Prathipkumar S (2020) Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater Sci Energy Technol 3:335–343. https://doi.org/10.1016/j.mset.2019.12.004

    Article  CAS  Google Scholar 

  7. Nagaraj E, Shanmugam P, Karuppannan K, Chinnasamy T, Venugopal S (2020) The biosynthesis of a graphene oxide-based zinc oxide nanocomposite using: Dalbergia latifolia leaf extract and its biological applications. New J Chem 44:2166–2179. https://doi.org/10.1039/c9nj04961d

    Article  CAS  Google Scholar 

  8. Ansari SA, Khan MM, Kalathil S, Nisar A, Lee J, Cho MH (2013) Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5:9238. https://doi.org/10.1039/c3nr02678g

    Article  CAS  PubMed  Google Scholar 

  9. Saravanan R, Agarwal S, Gupta VK, Khan MM, Gracia F, Mosquera E, Narayanan V, Stephen A (2018) Line defect Ce3+ induced Ag/CeO2 /ZnO nanostructure for visible-light photocatalytic activity. J Photochem Photobiol A Chem 353:499–506. https://doi.org/10.1016/j.jphotochem.2017.12.011

    Article  CAS  Google Scholar 

  10. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  11. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43:907–914. https://doi.org/10.1016/j.ceramint.2016.10.051

    Article  CAS  Google Scholar 

  12. Wróbel J, Piechota J (2007) Structural properties of ZnO polymorphs. Phys Status Solidi 244:1538–1543. https://doi.org/10.1002/pssb.200675132

    Article  CAS  Google Scholar 

  13. Klingshirn C, Waag A, Hoffmann A, Geurts J (2013) Zinc oxide from fundamental properties towards novel applications. Springer Berlin. https://doi.org/10.1007/978-3-642-10577-7

  14. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074

    Article  CAS  Google Scholar 

  15. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641. https://doi.org/10.1038/srep31641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Udayabhanu G, Nagaraju H, Nagabhushana RB, Basavaraj GK, Raghu D, Suresh H, Rajanaika SC (2016) Sharma, green, nonchemical route for the synthesis of ZnO superstructures, evaluation of its applications toward photocatalysis, photoluminescence, and biosensing. Cryst Growth Des 16:6828–6840. https://doi.org/10.1021/acs.cgd.6b00936

    Article  CAS  Google Scholar 

  17. Khan ZUH, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, Tahir K, Safi SZ, Khan FU, Imran M, Ahmad N, Ullah F, Ahmad A, Sayed M, Khalid MS, Qaisrani SA, Ali M, Zakir A (2019) Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J Photochem Photobiol B Biol 192:147–157. https://doi.org/10.1016/j.jphotobiol.2019.01.013

    Article  CAS  Google Scholar 

  18. Sathishkumar G, Rajkuberan C, Manikandan K, Prabukumar S, DanielJohn J, Sivaramakrishnan S (2017) Facile biosynthesis of antimicrobial zinc oxide (ZnO) nanoflakes using leaf extract of Couroupita guianensis Aubl. Mater Lett 188:383–386. https://doi.org/10.1016/j.matlet.2016.11.100

    Article  CAS  Google Scholar 

  19. Dobrucka R, Dlugaszewska J, Kaczmarek M (2018) Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomed Microdevices. https://doi.org/10.1007/s10544-017-0233-9

    Article  Google Scholar 

  20. Khara G, Padalia H, Moteriya P, Chanda S (2018) Peltophorum pterocarpum flower-mediated synthesis, characterization, antimicrobial and cytotoxic activities of ZnO nanoparticles. Arab J Sci Eng 43:3393–3401. https://doi.org/10.1007/s13369-017-2875-6

    Article  CAS  Google Scholar 

  21. Vijayakumar S, Krishnakumar C, Arulmozhi P, Mahadevan S, Parameswari N (2018) Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb Pathog 116:44–48. https://doi.org/10.1016/j.micpath.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava N, Srivastava M, Pandey H, Mishra PK, Ramteke PW (eds) (2018) Green nanotechnology for biofuel production. Springer International Publishing. https://doi.org/10.1007/978-3-319-75052-1.

  23. Lalithamba HS, Raghavendra M, Uma K, Yatish KV, Mousumi D, Nagendra G (2018) Capsicum annuum fruit extract: a novel reducing agent for the green synthesis of zno nanoparticles and their multifunctional applications. Acta Chim Slov 65:354–364. https://doi.org/10.17344/acsi.2017.4034

    Article  CAS  PubMed  Google Scholar 

  24. Nava OJ, Soto-Robles CA, Gómez-Gutiérrez CM, Vilchis-Nestor AR, Castro-Beltrán A, Olivas A, Luque PA (2017) Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct 1147:1–6. https://doi.org/10.1016/j.molstruc.2017.06.078

    Article  CAS  Google Scholar 

  25. Rana N, Chand S, Gathania AK (2016) Green synthesis of zinc oxide nano-sized spherical particles using Terminalia chebula fruits extract for their photocatalytic applications. Int Nano Lett 6:91–98. https://doi.org/10.1007/s40089-015-0171-6

    Article  CAS  Google Scholar 

  26. Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM (2018) Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol 117:91–95. https://doi.org/10.1016/j.enzmictec.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Dhand C, Dwivedi N, Loh J, Jie N (2015) RSC advances methods and strategies for the synthesis of diverse nanoparticles and their applications. RSC Adv 5:105003–105037. https://doi.org/10.1039/C5RA19388E

    Article  CAS  Google Scholar 

  28. Matussin S, Harunsani MH, Tan AL, Khan MM (2020) Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustain Chem Eng 8:3040–3054. https://doi.org/10.1021/acssuschemeng.9b06398

    Article  CAS  Google Scholar 

  29. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resour Technol 3:406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  30. Fakhari S, Jamzad M, Kabiri Fard H (2019) Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12:19–24. https://doi.org/10.1080/17518253.2018.1547925

    Article  CAS  Google Scholar 

  31. Harborne JB (1984) Phytochemical methods (2nd edn) Chapman and Hall, New York. https://doi.org/10.1007/978-94-009-5570-7.

  32. Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52. https://doi.org/10.1039/C5GC01403D

    Article  Google Scholar 

  33. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe Barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566. https://doi.org/10.1016/j.materresbull.2011.07.046

    Article  CAS  Google Scholar 

  34. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30:168–175. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  35. Ezealisiji KM, Siwe-Noundou X, Maduelosi B, Nwachukwu N, Krause RWM (2019) Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. Int Nano Lett 9:99–107. https://doi.org/10.1007/s40089-018-0263-1

    Article  CAS  Google Scholar 

  36. Nn A (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants 04:3–8. https://doi.org/10.4172/2167-0412.1000196

    Article  Google Scholar 

  37. Selim YA, Azb MA, Ragab I, Abd El-Azim MHM (2020) Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep 10:3445. https://doi.org/10.1038/s41598-020-60541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saif S, Tahir A, Asim T, Chen Y, Khan M, Adil SF (2019) Green synthesis of ZnO hierarchical microstructures by Cordia myxa and their antibacterial activity. Saudi J Biol Sci 26:1364–1371. https://doi.org/10.1016/j.sjbs.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suna S, Tamer CE, Özcan-Sinir G (2019) Trends and possibilities of the usage of medicinal herbal extracts in beverage production. In: Nat Beverages. Elsevier, pp 361–398. https://doi.org/10.1016/B978-0-12-816689-5.00013-4

  40. Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C 82:46–59. https://doi.org/10.1016/j.msec.2017.08.071

    Article  CAS  Google Scholar 

  41. Ahmad W, Kalra D (2020) Green synthesis, characterization and antimicrobial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J King Saud Univ Sci 32:2358–2364. https://doi.org/10.1016/j.jksus.2020.03.014

    Article  Google Scholar 

  42. Kumar BP, Arthanareeswari M, Devikala S, Sridharan M, Selvi JA, Malini TP (2019) Green synthesis of zinc oxide nanoparticles using Typha latifolia L. leaf extract for photocatalytic applications. Mater Today Proc 14:332–337. https://doi.org/10.1016/j.matpr.2019.04.155

    Article  CAS  Google Scholar 

  43. Zare M, Namratha K, Thakur MS, Byrappa K (2019) Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater Res Bull 109:49–59. https://doi.org/10.1016/j.materresbull.2018.09.025

    Article  CAS  Google Scholar 

  44. Datta A, Patra C, Bharadwaj H, Kaur S, Dimri N, Khajuria R (2017) Green synthesis of zinc oxide nanoparticles using Parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J Biotechnol Biomater 7:3–7. https://doi.org/10.4172/2155-952X.1000271

    Article  Google Scholar 

  45. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792. https://doi.org/10.1039/c4cs00363b

    Article  CAS  PubMed  Google Scholar 

  46. Truong D-H, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC (2019) Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual 2019:1–9. https://doi.org/10.1155/2019/8178294

    Article  CAS  Google Scholar 

  47. Castro-Puyana M, Marina ML, Plaza M (2017) Water as green extraction solvent: principles and reasons for its use. Curr Opin Green Sustain Chem 5:31–36. https://doi.org/10.1016/j.cogsc.2017.03.009

    Article  Google Scholar 

  48. Rashid Z, Moadi T, Ghahremanzadeh R (2016) Green synthesis and characterization of silver nanoparticles using Ferula latisecta leaf extract and their application as a catalyst for the safe and simple one-pot preparation of spirooxindoles in water. New J Chem 40:3343–3349. https://doi.org/10.1039/C5NJ02656C

    Article  CAS  Google Scholar 

  49. Nava OJ, Luque PA, Gómez-Gutiérrez CM, Vilchis-Nestor AR, Castro-Beltrán A, Mota-González ML, Olivas A (2017) Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J Mol Struct 1134:121–125. https://doi.org/10.1016/j.molstruc.2016.12.069

    Article  CAS  Google Scholar 

  50. Nithya K, Kalyanasundharam S (2019) Effect of chemically synthesis compared to biosynthesized ZnO nanoparticles using aqueous extract of C. halicacabum and their antibacterial activity. OpenNano 4:100024. https://doi.org/10.1016/j.onano.2018.10.001

    Article  Google Scholar 

  51. Pandiyan N, Murugesan B, Arumugam M, Sonamuthu J, Samayanan S, Mahalingam S (2019) Ionic liquid—a greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it’s antibacterial and anticancer activities. J Photochem Photobiol B Biol 198:111559. https://doi.org/10.1016/j.jphotobiol.2019.111559

    Article  CAS  Google Scholar 

  52. Yulizar Y, Bakri R, Apriandanu DOB, Hidayat T (2018) ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao. Nano Struct Nano Objects 16:300–305. https://doi.org/10.1016/j.nanoso.2018.09.003

    Article  CAS  Google Scholar 

  53. Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365. https://doi.org/10.1016/j.molstruc.2016.07.029

    Article  CAS  Google Scholar 

  54. Vijayakumar S, Mahadevan S, Arulmozhi P, Sriram S, Praseetha PK (2018) Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater Sci Semicond Process 82:39–45. https://doi.org/10.1016/j.mssp.2018.03.017

    Article  CAS  Google Scholar 

  55. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity, spectrochim. Acta Part A Mol Biomol Spectrosc 136:864–870. https://doi.org/10.1016/j.saa.2014.09.105

    Article  CAS  Google Scholar 

  56. Odoom-Wubah T, Osei WB, Chen X, Sun D, Huang J, Li Q (2016) Synthesis of ZnO micro-flowers assisted by a plant-mediated strategy. J Chem Technol Biotechnol 91:1493–1504. https://doi.org/10.1002/jctb.4748

    Article  CAS  Google Scholar 

  57. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Adaikala Raj G (2015) Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 26:1639–1651. https://doi.org/10.1016/j.apt.2015.09.008

    Article  CAS  Google Scholar 

  58. Abbasi BH, Anjum S, Hano C (2017) Differential effects of in vitro cultures of Linum usitatissimum L. (Flax) on biosynthesis, stability, antibacterial and antileishmanial activities of zinc oxide nanoparticles: a mechanistic approach. RSC Adv 7:15931–15943. https://doi.org/10.1039/c7ra02070h

    Article  CAS  Google Scholar 

  59. Azizi S, Namvar F, Mohamad R, Md Tahir P, Mahdavi M (2015) Facile biosynthesis and characterization of palm pollen stabilized ZnO nanoparticles. Mater Lett 148:106–109. https://doi.org/10.1016/j.matlet.2015.02.080

    Article  CAS  Google Scholar 

  60. Prasad AR, Garvasis J, Oruvil SK, Joseph A (2019) Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants. J Phys Chem Solids 127:265–274. https://doi.org/10.1016/j.jpcs.2019.01.003

    Article  CAS  Google Scholar 

  61. Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA, Bisetty K (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol B Biol 162:199–207. https://doi.org/10.1016/j.jphotobiol.2016.06.043

    Article  CAS  Google Scholar 

  62. Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M, Hassan I, Khan JM, Ashraf GM, Alsalme A, Al-Ajmi MF, Tarasov VV, Aliev G (2016) Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep 6:36761. https://doi.org/10.1038/srep36761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manjari G, Saran S, Radhakrishanan S, Rameshkumar P, Pandikumar A, Devipriya SP (2020) Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J Environ Manage 262:110282. https://doi.org/10.1016/j.jenvman.2020.110282

    Article  CAS  PubMed  Google Scholar 

  64. Vijayakumar S, Arulmozhi P, Kumar N, Sakthivel B, Prathip Kumar S, Praseetha PK (2020) Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: characterization and antimicrobial activities. Mater Today Proc 23:73–80. https://doi.org/10.1016/j.matpr.2019.06.660

    Article  CAS  Google Scholar 

  65. Fahimmunisha BA, Ishwarya R, AlSalhi MS, Devanesan S, Govindarajan M, Vaseeharan B (2020) Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Deliv Sci Technol 55:101465. https://doi.org/10.1016/j.jddst.2019.101465

    Article  CAS  Google Scholar 

  66. Mahendra C, Chandra MN, Murali M, Abhilash MR, Singh SB, Satish S, Sudarshana M (2020) Phyto-fabricated ZnO nanoparticles from Canthium dicoccum (L.) for antimicrobial, anti-tuberculosis and antioxidant activity. Process Biochem 89:220–226. https://doi.org/10.1016/j.procbio.2019.10.020

    Article  CAS  Google Scholar 

  67. Soto-Robles CA, Luque PA, Gómez-Gutiérrez CM, Nava O, Vilchis-Nestor AR, Lugo-Medina E, Ranjithkumar R, Castro-Beltrán A (2019) Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results Phys 15:102807. https://doi.org/10.1016/j.rinp.2019.102807

    Article  Google Scholar 

  68. Karunakaran G, Jagathambal M, Kumar GS, Kolesnikov E (2020) Hylotelephium telephium flower extract-mediated biosynthesis of CuO and ZnO nanoparticles with promising antioxidant and antibacterial properties for healthcare applications. JOM 72:1264–1272. https://doi.org/10.1007/s11837-020-04007-9

    Article  CAS  Google Scholar 

  69. Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Azamay S, Ahmad N (2020) Antibacterial activities of zinc oxide and Mn-doped zinc oxide synthesized using Melastoma malabathricum (L.) leaf extract. Bioprocess Biosyst Eng 43:1499–1508. https://doi.org/10.1007/s00449-020-02343-3

    Article  CAS  PubMed  Google Scholar 

  70. Dhandapani KV, Anbumani D, Gandhi AD, Annamalai P, Muthuvenkatachalam BS, Kavitha P, Ranganathan B (2020) Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatal Agric Biotechnol 24:101517. https://doi.org/10.1016/j.bcab.2020.101517

    Article  Google Scholar 

  71. Subbiah R, Muthukumaran S, Raja V (2020) Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using Ocimum tenuiflorum leaf extract. Optik (Stuttg) 208:164556. https://doi.org/10.1016/j.ijleo.2020.164556

    Article  CAS  Google Scholar 

  72. Panchal P, Paul DR, Sharma A, Choudhary P, Meena P, Nehra SP (2020) Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water. J Colloid Interface Sci 563:370–380. https://doi.org/10.1016/j.jcis.2019.12.079

    Article  CAS  PubMed  Google Scholar 

  73. Sheik Mydeen S, Raj Kumar R, Kottaisamy M, Vasantha VS (2020) Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: antibacterial activities and a new approach by rust-induced photocatalysis. J Saudi Chem Soc 24:393–406. https://doi.org/10.1016/j.jscs.2020.03.003

    Article  CAS  Google Scholar 

  74. Moghaddas SMTH, Elahi B, Javanbakht V (2020) Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation. J Alloys Compd 821:153519. https://doi.org/10.1016/j.jallcom.2019.153519

    Article  CAS  Google Scholar 

  75. Liu D, Liu L, Yao L, Peng X, Li Y, Jiang T, Kuang H (2020) Synthesis of ZnO nanoparticles using radish root extract for effective wound dressing agents for diabetic foot ulcers in nursing care. J Drug Deliv Sci Technol 55:101364. https://doi.org/10.1016/j.jddst.2019.101364

    Article  CAS  Google Scholar 

  76. Xu K, Yan H, Cao M, Shao X (2020) Selaginella convolute extract mediated synthesis of ZnO NPs for pain management in emerging nursing care. J Photochem Photobiol B Biol 202:111700. https://doi.org/10.1016/j.jphotobiol.2019.111700

    Article  CAS  Google Scholar 

  77. Muthuvel A, Jothibas M, Manoharan C (2020) Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J Environ Chem Eng 8:103705. https://doi.org/10.1016/j.jece.2020.103705

    Article  CAS  Google Scholar 

  78. Golmohammadi M, Honarmand M, Ghanbari S (2020) A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochim Acta Part A Mol Biomol Spectrosc 229:117961. https://doi.org/10.1016/j.saa.2019.117961

    Article  CAS  Google Scholar 

  79. Khan MM, Saadah NH, Khan ME, Harunsani MH, Tan AL, Cho MH (2019) Phytogenic synthesis of band gap-narrowed ZnO nanoparticles using the bulb extract of Costus woodsonii. Bionanoscience 9:334–344. https://doi.org/10.1007/s12668-019-00616-0

    Article  Google Scholar 

  80. Khan MM, Saadah NH, Khan ME, Harunsani MH, Tan AL, Cho MH (2019) Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater Sci Semicond Process 91:194–200. https://doi.org/10.1016/j.mssp.2018.11.030

    Article  CAS  Google Scholar 

  81. Chai H-Y, Lam S-M, Sin J-C (2019) Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities. Mater Lett 242:103–106. https://doi.org/10.1016/j.matlet.2019.01.116

    Article  CAS  Google Scholar 

  82. Lu J, Batjikh I, Hurh J, Han Y, Ali H, Mathiyalagan R, Ling C, Ahn JC, Yang DC (2019) Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik (Stuttg) 182:980–985. https://doi.org/10.1016/j.ijleo.2018.12.016

    Article  CAS  Google Scholar 

  83. Kiran Kumar ABV, Saila ES, Narang P, Aishwarya M, Raina R, Gautam M, Shankar EG (2019) Biofunctionalization and biological synthesis of the ZnO nanoparticles: the effect of Raphanus sativus (white radish) root extract on antimicrobial activity against MDR strain for wound healing applications. Inorg Chem Commun 100:101–106. https://doi.org/10.1016/j.inoche.2018.12.014

    Article  CAS  Google Scholar 

  84. Shobha N, Nanda N, Giresha AS, Manjappa P, Sophiya P, Dharmappa KK, Nagabhushana BM (2019) Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater Sci Eng C 97:842–850. https://doi.org/10.1016/j.msec.2018.12.023

    Article  CAS  Google Scholar 

  85. Babu AT, Antony R (2019) Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J Environ Chem Eng 7:102840. https://doi.org/10.1016/j.jece.2018.102840

    Article  CAS  Google Scholar 

  86. Duraimurugan J, Kumar GS, Maadeswaran P, Shanavas S, Anbarasan PM, Vasudevan V (2019) Structural, optical and photocatalytic properties of zinc oxide nanoparticles obtained by simple plant extract mediated synthesis. J Mater Sci Mater Electron 30:1927–1935. https://doi.org/10.1007/s10854-018-0466-2

    Article  CAS  Google Scholar 

  87. Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DCW, Bolan N, Kim KH (2019) The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod 214:1061–1070. https://doi.org/10.1016/j.jclepro.2019.01.018

    Article  CAS  Google Scholar 

  88. Steffy K, Shanthi G, Maroky AS, Selvakumar S (2018) Enhanced antibacterial effects of green synthesized ZnO NPs using Aristolochia indica against multi-drug resistant bacterial pathogens from diabetic foot ulcer. J Infect Public Health 11:463–471. https://doi.org/10.1016/j.jiph.2017.10.006

    Article  PubMed  Google Scholar 

  89. Anitha R, Ramesh KV, Ravishankar TN, Sudheer Kumar KH, Ramakrishnappa T (2018) Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J Sci Adv Mater Devices 3:440–451. https://doi.org/10.1016/j.jsamd.2018.11.001

    Article  Google Scholar 

  90. Ramanarayanan R, Bhabhina NM, Dharsana MV, Nivedita CV, Sindhu S (2018) Green synthesis of zinc oxide nanoparticles using extract of Averrhoa bilimbi (L) and their photoelectrode applications. Mater Today Proc 5:16472–16477. https://doi.org/10.1016/j.matpr.2018.05.150

    Article  CAS  Google Scholar 

  91. Sharmila G, Muthukumaran C, Sandiya K, Santhiya S, Pradeep Sakthi R, Kumar NM, Suriyanarayanan N, Thirumarimurugan M (2018) Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J Nanostructure Chem 8:293–299. https://doi.org/10.1007/s40097-018-0271-8

    Article  CAS  Google Scholar 

  92. Ali J, Irshad R, Li B, Tahir K, Ahmad A, Shakeel M, Khan NU, Khan ZUH (2018) Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. J Photochem Photobiol B Biol 183:349–356. https://doi.org/10.1016/j.jphotobiol.2018.05.006

    Article  CAS  Google Scholar 

  93. Aminuzzaman M, Ying LP, Goh W-S, Watanabe A (2018) Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci 41:50. https://doi.org/10.1007/s12034-018-1568-4

    Article  CAS  Google Scholar 

  94. Bordbar M, Negahdar N, Nasrollahzadeh M (2018) Melissa Officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B. Sep Purif Technol 191:295–300. https://doi.org/10.1016/j.seppur.2017.09.044

    Article  CAS  Google Scholar 

  95. Rajeswari M, Agrawal P, Roopa GS, Jain AA, Gupta PK (2018) Green synthesis and characterization of multifunctional zinc oxide nanomaterials using extract of Moringa Oleifera seed. Mater Today Proc 5:20996–21002. https://doi.org/10.1016/j.matpr.2018.06.491

    Article  CAS  Google Scholar 

  96. Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B Biol 181:53–58. https://doi.org/10.1016/j.jphotobiol.2018.02.011

    Article  CAS  Google Scholar 

  97. Vidya C, Manjunatha C, Chandraprabha MN, Rajshekar M, Antony Raj MAL (2017) Hazard free green synthesis of ZnO nano-photo-catalyst using Artocarpus Heterophyllus leaf extract for the degradation of Congo red dye in water treatment applications. J Environ Chem Eng 5:3172–3180. https://doi.org/10.1016/j.jece.2017.05.058

    Article  CAS  Google Scholar 

  98. Rathnasamy R, Thangasamy P, Thangamuthu R, Sampath S, Alagan V (2017) Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J Mater Sci Mater Electron 28:10374–10381. https://doi.org/10.1007/s10854-017-6807-8

    Article  CAS  Google Scholar 

  99. Siripireddy B, Mandal BK (2017) Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv Powder Technol 28:785–797. https://doi.org/10.1016/j.apt.2016.11.026

    Article  CAS  Google Scholar 

  100. Raghavendra M, Yatish KV, Lalithamba HS (2017) Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: Photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production. Eur Phys J Plus 132:358. https://doi.org/10.1140/epjp/i2017-11627-1

    Article  CAS  Google Scholar 

  101. Archana B, Manjunath K, Nagaraju G, Chandra Sekhar KB, Kottam N (2017) Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int J Hydrogen Energy 42:5125–5131. https://doi.org/10.1016/j.ijhydene.2016.11.099

    Article  CAS  Google Scholar 

  102. Umaralikhan L, Jaffar MJM (2017) Green synthesis of ZnO and Mg doped ZnO nanoparticles, and its optical properties. J Mater Sci Mater Electron 28:7677–7685. https://doi.org/10.1007/s10854-017-6461-1

    Article  CAS  Google Scholar 

  103. Geetha MS, Nagabhushana H, Shivananjaiah HN (2016) Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater Devices 1:301–310. https://doi.org/10.1016/j.jsamd.2016.06.015

    Article  Google Scholar 

  104. Lingaraju K, Raja Naika H, Manjunath K, Basavaraj RB, Nagabhushana H, Nagaraju G, Suresh D (2016) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 6:703–710. https://doi.org/10.1007/s13204-015-0487-6

    Article  CAS  Google Scholar 

  105. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci 23:517–523. https://doi.org/10.1016/j.sjbs.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  106. Thema FT, Manikandan E, Dhlamini MS, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127. https://doi.org/10.1016/j.matlet.2015.08.052

    Article  CAS  Google Scholar 

  107. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater Sci Semicond Process 39:621–628. https://doi.org/10.1016/j.mssp.2015.06.005

    Article  CAS  Google Scholar 

  108. Suresh D, Shobharani RM, Nethravathi PC, Pavan Kumar MA, Nagabhushana H, Sharma SC (2015) Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim Acta Part A Mol Biomol Spectrosc 141:128–134. https://doi.org/10.1016/j.saa.2015.01.048

    Article  CAS  Google Scholar 

  109. Pavan Kumar MA, Suresh D, Nagabhushana H, Sharma SC (2015) Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur Phys J Plus 130:109. https://doi.org/10.1140/epjp/i2015-15109-2

    Article  CAS  Google Scholar 

  110. Nethravathi PC, Shruthi GS, Suresh D, Udayabhanu, Sharma SC, Nagabhushana H (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41:8680–8687. https://doi.org/10.1016/j.ceramint.2015.03.084

    Article  CAS  Google Scholar 

  111. Semenya CJ, Maseko RB, Gololo SS (2018) Comparative Qualitative Phytochemical analysis of the different parts of Barleria dinteri (Oberm): a contribution to sustainable use of the plant species. J Pharm Chem Biol Sci 6:52–59

    CAS  Google Scholar 

  112. Xu F, Guo W, Xu W, Wei Y, Wang R (2009) Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves. Prog Nat Sci 19:1789–1798. https://doi.org/10.1016/j.pnsc.2009.10.001

    Article  Google Scholar 

  113. Sokolov SV, Batchelor-Mcauley C, Tschulik K, Fletcher S, Compton RG (2015) Are nanoparticles spherical or quasi-spherical? Chem A Eur J 21:10741–10746. https://doi.org/10.1002/chem.201500807

    Article  CAS  Google Scholar 

  114. Crawford BCW, Yanofsky MF (2008) The formation and function of the female reproductive tract in flowering plants. Curr Biol 18:972–978. https://doi.org/10.1016/j.cub.2008.08.010

    Article  CAS  Google Scholar 

  115. Kumari KLNW, Abeysinghe DC, Dharmadasa RM (2016) Distribution of phytochemicals and bioactivity in different parts and leaf positions of Stevia Rebaudiana (Bertoni) Bertoni-a non-caloric, natural sweetener. World J Agric Res 4:162–165. https://doi.org/10.12691/wjar-4-6-2

    Article  Google Scholar 

  116. Krishnan HB, Coe EH (2001) Seed storage proteins. In: Encycl Genet. Elsevier, pp 1782–1787. https://doi.org/10.1006/rwgn.2001.1714.

  117. Ansari MA, Alzohairy MA (2018) One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid Based Complement Altern Med 2018:1–9. https://doi.org/10.1155/2018/1860280

    Article  Google Scholar 

  118. Piližota V (2014) Fruits and vegetables (including herbs). In: Food Saf Manag A Pract Guid Food Ind. Elsevier, pp 213–249. https://doi.org/10.1016/B978-0-12-381504-0.00009-3

  119. Sivakumar P, Lee M, Kim Y-S, Shim MS (2018) Photo-triggered antibacterial and anticancer activities of zinc oxide nanoparticles. J Mater Chem B 6:4852–4871. https://doi.org/10.1039/C8TB00948A

    Article  CAS  PubMed  Google Scholar 

  120. Devi SA, Harshiny M, Udaykumar S, Gopinath P, Matheswaran M (2017) Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits. Toxicol Res (Camb) 6:854–865. https://doi.org/10.1039/C7TX00093F

    Article  Google Scholar 

  121. Rahmati A, Balouch Sirgani A, Molaei M, Karimipour M (2014) Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route. Eur Phys J Plus 129:250. https://doi.org/10.1140/epjp/i2014-14250-8

    Article  CAS  Google Scholar 

  122. Thaweesaeng N, Supankit S, Techidheera W, Pecharapa W (2013) Structure properties of as-synthesized Cu-doped ZnO nanopowder synthesized by co-precipitation method. Energy Procedia 34:682–688. https://doi.org/10.1016/j.egypro.2013.06.800

    Article  CAS  Google Scholar 

  123. Mia MNH, Pervez MF, Hossain MK, Reefaz Rahman M, Uddin MJ, Al Mashud MA, Ghosh HK, Hoq M (2017) Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method. Results Phys 7:2683–2691. https://doi.org/10.1016/j.rinp.2017.07.047

    Article  Google Scholar 

  124. Ritika M, Kaur A, Umar S, Mehta S, Singh S, Kansal H, Fouad O (2018) Alothman, rapid solar-light driven superior photocatalytic degradation of methylene blue using MoS2-ZnO heterostructure nanorods photocatalyst. Materials (Basel) 11:2254. https://doi.org/10.3390/ma11112254

    Article  CAS  Google Scholar 

  125. Fazlzadeh M, Khosravi R, Zarei A (2017) Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr(VI) from aqueous solution. Ecol Eng 103:180–190. https://doi.org/10.1016/j.ecoleng.2017.02.052

    Article  Google Scholar 

  126. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basu R, Nandy P (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003. https://doi.org/10.1039/c4ra12784f

    Article  CAS  Google Scholar 

  127. Elavarasan N, Kokila K, Inbasekar G, Sujatha V (2017) Evaluation of photocatalytic activity, antibacterial and cytotoxic effects of green synthesized ZnO nanoparticles by Sechium edule leaf extract. Res Chem Intermed 43:3361–3376. https://doi.org/10.1007/s11164-016-2830-2

    Article  CAS  Google Scholar 

  128. Ngoepe NM, Mbita Z, Mathipa M, Mketo N, Ntsendwana B, Hintsho-Mbita NC (2018) Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram Int 44:16999–17006. https://doi.org/10.1016/j.ceramint.2018.06.142

    Article  CAS  Google Scholar 

  129. Elemike EE, Onwudiwe DC, Wei L, Lou C, Zhao Z (2019) Synthesis of nanostructured ZnO, AgZnO and the composites with reduced graphene oxide (rGO-AgZnO) using leaf extract of Stigmaphyllon ovatum. J Environ Chem Eng 7:103190. https://doi.org/10.1016/j.jece.2019.103190

    Article  CAS  Google Scholar 

  130. Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett 128:170–174. https://doi.org/10.1016/j.matlet.2014.04.112

    Article  CAS  Google Scholar 

  131. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, Saad WZ (2016) Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica. J Photochem Photobiol B Biol 161:441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007

    Article  CAS  Google Scholar 

  132. Joghee S, Ganeshan P, Vincent A, Hong SI (2019) Ecofriendly biosynthesis of zinc oxide and magnesium oxide particles from medicinal plant Pisonia grandis R. Br. leaf extract and their antimicrobial activity. Bionanoscience 9:141–154. https://doi.org/10.1007/s12668-018-0573-9

    Article  Google Scholar 

  133. Cho S, Jang J-W, Lee JS, Lee K-H (2010) Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis. CrystEngComm 12:3929. https://doi.org/10.1039/c0ce00063a

    Article  CAS  Google Scholar 

  134. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng C 59:296–302. https://doi.org/10.1016/j.msec.2015.09.089

    Article  CAS  Google Scholar 

  135. Sutradhar P, Saha M (2016) Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J Exp Nanosci 11:314–327. https://doi.org/10.1080/17458080.2015.1059504

    Article  CAS  Google Scholar 

  136. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347. https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  CAS  Google Scholar 

  137. Singh AK, Viswanath V, Janu VC (2009) Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. J Lumin 129:874–878. https://doi.org/10.1016/j.jlumin.2009.03.027

    Article  CAS  Google Scholar 

  138. Hunge YM, Yadav AA, Mathe VL (2019) Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem Phys Lett 731:136582. https://doi.org/10.1016/j.cplett.2019.07.010

    Article  CAS  Google Scholar 

  139. Sadanandam G, Lalitha K, Kumari VD, Shankar MV, Subrahmanyam M (2013) Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int J Hydrogen Energy 38:9655–9664. https://doi.org/10.1016/j.ijhydene.2013.05.116

    Article  CAS  Google Scholar 

  140. Pavliuk MV, Cieślak AM, Abdellah M, Budinská A, Pullen S, Sokołowski K, Fernandes DLA, Szlachetko J, Bastos EL, Ott S, Hammarström L, Edvinsson T, Lewiński J, Sá J (2017) Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic. Sustain Energy Fuels 1:69–73. https://doi.org/10.1039/C6SE00066E

    Article  CAS  Google Scholar 

  141. Fujishima A, Honda K (1972) Electrochemical photolysis of water one and two-dimensional structure of poly (L-Alanine ) shown by specific heat measurements at low. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  142. Preethi V, Kanmani S (2013) Photocatalytic hydrogen production. Mater Sci Semicond Process 16:561–575. https://doi.org/10.1016/j.mssp.2013.02.001

    Article  CAS  Google Scholar 

  143. Kumaravel V, Imam M, Badreldin A, Chava R, Do J, Kang M, Abdel-Wahab A (2019) Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide carbon, and sulfide catalysts. Catalysts 9:276. https://doi.org/10.3390/catal9030276

    Article  CAS  Google Scholar 

  144. Yadav LSR, Pratibha S, Manjunath K, Shivanna M, Ramakrishnappa T, Dhananjaya N, Nagaraju G (2019) Green synthesis of Ag ZnO nanoparticles: structural analysis, hydrogen generation, formylation and biodiesel applications. J Sci Adv Mater Devices 4:425–431. https://doi.org/10.1016/j.jsamd.2019.03.001

    Article  Google Scholar 

  145. Shimasaki C (2014) Understanding biotechnology product sectors. Elsevier. https://doi.org/10.1016/B978-0-12-404730-3.00009-9

  146. Rodríguez-Couto S (2019) Green nanotechnology for biofuel production. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-94797-6_4

  147. Hassan MH, Kalam MA (2013) An overview of biofuel as a renewable energy source: development and challenges. Procedia Eng 56:39–53. https://doi.org/10.1016/j.proeng.2013.03.087

    Article  Google Scholar 

  148. Dantas J, Leal E, Cornejo DR, Kiminami RHGA, Costa ACFM (2018) Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.08.012

    Article  Google Scholar 

  149. Teo SH, Islam A, Taufiq-Yap YH (2016) Algae derived biodiesel using nanocatalytic transesterification process. Chem Eng Res Des 111:362–370. https://doi.org/10.1016/j.cherd.2016.04.012

    Article  CAS  Google Scholar 

  150. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840. https://doi.org/10.1016/j.enconman.2009.03.001

    Article  CAS  Google Scholar 

  151. Hashmi S, Gohar S, Mahmood T, Nawaz U, Farooqi H (2016) Biodiesel production by using CaO-Al2O3 nanocatalyst. Int J Eng Res Sci 2:2395–6992

    Google Scholar 

  152. Amirante R, Demastro G, Distaso E, Hassaan M, Mormando A, Pantaleo A, Tamburrano P, Tedone L, Clodoveo M (2018) Effects of ultrasound and green synthesis ZnO nanoparticles on biogas production from olive pomace. Energy Procedia 148:940–947. https://doi.org/10.1016/j.egypro.2018.08.091

    Article  CAS  Google Scholar 

  153. Saravanan R, Gracia F, Khan MM, Poornima V, Gupta VK, Narayanan V, Stephen A (2015) ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J Mol Liq 209:374–380. https://doi.org/10.1016/j.molliq.2015.05.040

    Article  CAS  Google Scholar 

  154. Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/Mn 2 O 3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651. https://doi.org/10.1039/C5RA02557E

    Article  CAS  Google Scholar 

  155. Saravanan R, Mansoob Khan M, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 452:126–133. https://doi.org/10.1016/j.jcis.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  156. Tareq R, Akter N, Azam MS (2019) Biochars and biochar composites. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811729-3.00010-8

  157. Zhu MX, Lee L, Wang HH, Wang Z (2007) Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater 149:735–741. https://doi.org/10.1016/j.jhazmat.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  158. Kooh MRR, Dahri MK, Lim LBL (2016) The removal of rhodamine B dye from aqueous solution using Casuarina equisetifolia needles as adsorbent. Cogent Environ Sci 2:1–14. https://doi.org/10.1080/23311843.2016.1140553

    Article  CAS  Google Scholar 

  159. Lu J, Ali H, Hurh J, Han Y, Batjikh I, Rupa EJ, Anandapadmanaban G, Park JK, Yang D-C (2019) The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik (Stuttg) 184:82–89. https://doi.org/10.1016/j.ijleo.2019.03.050

    Article  CAS  Google Scholar 

  160. Shanmugam V, Jeyaperumal KS (2018) Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Appl Surf Sci 449:617–630. https://doi.org/10.1016/j.apsusc.2017.11.167

    Article  CAS  Google Scholar 

  161. Shi B, Li G, Wang D, Feng C, Tang H (2007) Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J Hazard Mater 143:567–574. https://doi.org/10.1016/j.jhazmat.2006.09.076

    Article  CAS  PubMed  Google Scholar 

  162. Roy DC, Biswas SK, Saha AK, Sikdar B, Rahman M, Roy AK, Prodhan ZH, Tang S-S (2018) Biodegradation of crystal violet dye by bacteria isolated from textile industry effluents. PeerJ 6:e5015. https://doi.org/10.7717/peerj.5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Araújo CKC, Oliveira GR, Fernandes NS, Zanta CLPS, Castro SSL, da Silva DR, Martínez-Huitle CA (2014) Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure. Environ Sci Pollut Res 21:9777–9784. https://doi.org/10.1007/s11356-014-2918-4

    Article  CAS  Google Scholar 

  164. Gupta VK, Jain R, Varshney S (2007) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci 312:292–296. https://doi.org/10.1016/j.jcis.2007.03.054

    Article  CAS  PubMed  Google Scholar 

  165. Banerjee P, DasGupta S, De S (2007) Removal of dye from aqueous solution using a combination of advanced oxidation process and nanofiltration. J Hazard Mater 140:95–103. https://doi.org/10.1016/j.jhazmat.2006.06.075

    Article  CAS  PubMed  Google Scholar 

  166. Gawade VV, Gavade NL, Shinde HM, Babar SB, Kadam AN, Garadkar KM (2017) Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J Mater Sci Mater Electron 28:14033–14039. https://doi.org/10.1007/s10854-017-7254-2

    Article  CAS  Google Scholar 

  167. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464. https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  168. Ohtani B (2010) Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J Photochem Photobiol C Photochem Rev 11:157–178. https://doi.org/10.1016/j.jphotochemrev.2011.02.001

    Article  CAS  Google Scholar 

  169. Kumar SG, Rao KSRK (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5:3306–3351. https://doi.org/10.1039/C4RA13299H

    Article  CAS  Google Scholar 

  170. Sabna V, Thampi SG, Chandrakaran S (2018) Adsorptive removal of cationic and anionic dyes using graphene oxide. Water Sci Technol 78:732–742. https://doi.org/10.2166/wst.2018.311

    Article  CAS  PubMed  Google Scholar 

  171. Gavade NL, Kadam AN, Babar SB, Gophane AD, Garadkar KM, Lee S-W (2020) Biogenic synthesis of gold-anchored ZnO nanorods as photocatalyst for sunlight-induced degradation of dye effluent and its toxicity assessment. Ceram Int 46:11317–11327. https://doi.org/10.1016/j.ceramint.2020.01.161

    Article  CAS  Google Scholar 

  172. Kanagamani K, Muthukrishnan P, Saravanakumar K, Shankar K, Kathiresan A (2019) Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity. Rare Met 38:277–286. https://doi.org/10.1007/s12598-018-1189-5

    Article  CAS  Google Scholar 

  173. Davar F, Majedi A, Mirzaei A (2015) Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J Am Ceram Soc 98:1739–1746. https://doi.org/10.1111/jace.13467

    Article  CAS  Google Scholar 

  174. Liu L, Zhang B, Zhang Y, He Y, Huang L, Tan S, Cai X (2015) Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J Chem Eng Data 60:1270–1278. https://doi.org/10.1021/je5009312

    Article  CAS  Google Scholar 

  175. Singh S, Barick KC, Bahadur D (2013) Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J Mater Chem A 1:3325. https://doi.org/10.1039/c2ta01045c

    Article  CAS  Google Scholar 

  176. Khan ME, Khan MM, Cho MH (2015) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39:8121–8129. https://doi.org/10.1039/C5NJ01320H

    Article  CAS  Google Scholar 

  177. Sai Saraswathi V, Tatsugi J, Shin P-K, Santhakumar K (2017) Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciosa. J Photochem Photobiol B Biol 167:89–98. https://doi.org/10.1016/j.jphotobiol.2016.12.032

    Article  CAS  Google Scholar 

  178. Vidya C, Prabha MNC, Raj MALA (2016) Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ Nanotechnology Monit Manag 6:134–138. https://doi.org/10.1016/j.enmm.2016.09.004

    Article  Google Scholar 

  179. Fair RJ, Tor Y (2014) Bacterial resistance in the 21st Century. Perspect Medicin Chem. https://doi.org/10.4137/PMC.S14459.Received

    Article  PubMed  PubMed Central  Google Scholar 

  180. Bhuyan T, Mishra K, Khanuja M, Prasad R (2015) Materials science in semiconductor processing biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61. https://doi.org/10.1016/j.mssp.2014.12.053

    Article  CAS  Google Scholar 

  181. Chandra H, Patel D, Kumari P, Jangwan JS, Yadav S (2019) Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater Sci Eng C 102:212–220. https://doi.org/10.1016/j.msec.2019.04.035

    Article  CAS  Google Scholar 

  182. Happy A, Soumya M, Venkat Kumar S, Rajeshkumar S, Sheba RD, Lakshmi T, Deepak Nallaswamy V (2019) Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochem Biophys Reports 17:208–211. https://doi.org/10.1016/j.bbrep.2019.01.002

    Article  Google Scholar 

  183. Suresh D, Nethravathi PC, Udayabhanu, Rajanaika H, Nagabhushana H, Sharma SC (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454. https://doi.org/10.1016/j.mssp.2014.12.023

    Article  CAS  Google Scholar 

  184. Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D (2018) Effective antimicrobial activity of green ZnO nanoparticles of Catharanthus roseus. Front Microbiol 9:1–13. https://doi.org/10.3389/fmicb.2018.02030

    Article  CAS  Google Scholar 

  185. Stan M, Popa A, Toloman D, Silipas T-D, Vodnar DC, Katona G (2015) Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts. p 060004. https://doi.org/10.1063/1.4938454.

  186. Kumar M, Mehta A, Mishra A, Singh J, Rawat M, Basu S (2018) Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater Lett 215:121–124. https://doi.org/10.1016/j.matlet.2017.12.074

    Article  CAS  Google Scholar 

  187. Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalan M, Vetha Potheher I (2017) Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J Chem 41:10347–10356. https://doi.org/10.1039/C7NJ02664A

    Article  CAS  Google Scholar 

  188. Bayrami A, Alioghli S, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Ramesh S (2019) A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrason Sonochem 55:57–66. https://doi.org/10.1016/j.ultsonch.2019.03.010

    Article  CAS  PubMed  Google Scholar 

  189. Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol B Biol 146:52–57. https://doi.org/10.1016/j.jphotobiol.2015.02.020

    Article  CAS  Google Scholar 

  190. Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, Torelli MD, Hamers RJ, Murphy CJ, Haynes CL (2015) Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci 6:5186–5196. https://doi.org/10.1039/C5SC00792E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26:1294–1299. https://doi.org/10.1016/j.apt.2015.07.001

    Article  CAS  Google Scholar 

  192. Janaki AC, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 144:17–22. https://doi.org/10.1016/j.saa.2015.02.041

    Article  CAS  Google Scholar 

  193. Djurišić AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS (2015) Toxicity of Metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11:26–44. https://doi.org/10.1002/smll.201303947

    Article  CAS  PubMed  Google Scholar 

  194. Saratale RG, Karuppusamy I, Saratale GD, Pugazhendhi A, Kumar G, Park Y, Ghodake GS, Bharagava RN, Banu JR, Shin HS (2018) A comprehensive review on green nanomaterials using biological systems: recent perception and their future applications. Colloids Surfaces B Biointerfaces 170:20–35. https://doi.org/10.1016/j.colsurfb.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  195. Raja K, Sowmya R, Sudhagar R, Moorthy PS, Govindaraju K, Subramanian KS (2019) Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater Lett 235:164–167. https://doi.org/10.1016/j.matlet.2018.10.038

    Article  CAS  Google Scholar 

  196. Chaudhuri SK, Malodia L (2017) Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl Nanosci 7:501–512. https://doi.org/10.1007/s13204-017-0586-7

    Article  CAS  Google Scholar 

  197. Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS (2019) Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot 121:103–112. https://doi.org/10.1016/j.cropro.2019.03.015

    Article  CAS  Google Scholar 

  198. Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP (2018) Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater Chem Phys 203:40–48. https://doi.org/10.1016/j.matchemphys.2017.09.049

    Article  CAS  Google Scholar 

  199. Gerlier D (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94:57–63

    Article  CAS  Google Scholar 

  200. Raza W, Faisal SM, Owais M, Bahnemann D, Muneer M (2016) Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity. RSC Adv 6:78335–78350. https://doi.org/10.1039/c6ra06774c

    Article  CAS  Google Scholar 

  201. Okyay TO, Bala RK, Nguyen HN, Atalay R, Bayam Y, Rodrigues DF (2015) Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv 5:2568–2575. https://doi.org/10.1039/C4RA12539H

    Article  CAS  Google Scholar 

  202. Baskar G, Gurugulladevi A, Nishanthini T, Garrick BG, Aiswarya R, Gopinath M (2016) Synthesis of phytonanocomposite of zinc oxide by Ixora coccinea Linn for cancer treatment. J Inorg Organomet Polym Mater 26:876–880. https://doi.org/10.1007/s10904-016-0382-y

    Article  CAS  Google Scholar 

  203. Lingaraju K, Naika HR, Nagabhushana H, Nagaraju G (2019) Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: characterization and evaluation of antibacterial and anticancer properties. Biocatal Agric Biotechnol 18:100894. https://doi.org/10.1016/j.bcab.2018.10.011

    Article  Google Scholar 

  204. Mahendiran D, Subash G, Arumai Selvan D, Rehana D, Senthil Kumar R, Kalilur Rahiman A (2017) Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe Vera and Hibiscus sabdariffa: phytochemical, antibacterial, antioxidant and anti-proliferative studies. Bionanosciences 7:530–545. https://doi.org/10.1007/s12668-017-0418-y

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the FIC block grant (UBD/RSCH/1.4/FICBF(b)/2018/012) received from Universiti Brunei Darussalam, Brunei Darussalam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mansoob Khan.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Harunsani, M.H., Tan, A.L. et al. Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 44, 1333–1372 (2021). https://doi.org/10.1007/s00449-021-02530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02530-w

Keywords

Navigation