Skip to main content
Log in

Biomediated synthesis, characterization, and biological applications of nickel oxide nanoparticles derived from Toona ciliata, Ficus carica and Pinus roxburghii

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biomediated ecofriendly method for the synthesis of nickel oxide nanoparticles using plants extracts (Toona ciliata, Ficus carica and Pinus roxburghii) has been reported. The nanoparticles so obtained were characterized by various techniques such as ultraviolet–visible, powder X-ray diffraction, Fourier transform infrared spectroscopy, attenuated total reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis and fluorescence spectroscopy. Formation of nickel oxide nanoparticles was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction where the former technique ascertains the formation of bond between nickel and oxygen. The nickel oxide nanoparticles were found to be crystalline cubic face centered and show intense photoluminescence emission at 416, 414 and 413 nm, respectively. The antibacterial activity was studied against gram positive and gram negative bacterial species by agar well diffusion method. The nickel oxide nanoparticles show better activity against some bacterial strains with reference to the standard drugs Ciprofloxacin and Gentamicin. The anthelmintic activity against Pheretima posthuma of nanomaterials obtained from Pinus roxburghii was found to be greater than that derived from Toona ciliata and Ficus carica using the standard drug Albendazole. This method takes the advantage of the sustainable and economic approach for the synthesis of metal oxide nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551

    Article  CAS  Google Scholar 

  2. Kavitha KS, Baker S, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci 2:66–76

    Google Scholar 

  3. Yasin S, Liu L, Yao J (2013) Biosynthesis of silver nanoparticles by bamboo leaves extract and their antimicrobial activity. J Fiber Bioeng Inform 6:77–84

    Article  Google Scholar 

  4. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  5. Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, Mohammad A, Nishat N (2018) Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterizatison, antibacterial and antioxidant activity. J Photochem Photobiol B 185:262–274

    Article  CAS  PubMed  Google Scholar 

  6. Taylor PL, Ussher AL, Burrell RE (2005) Impact of heat on nanocrystalline silver dressings: Part I: Chemical and biological properties. Biomaterials 26:7221–7229

    Article  CAS  PubMed  Google Scholar 

  7. Bhat SA, Zafar F, Mondal AH, Kareem A, Mirza AU, Khan S, Mohammad A, Haq QMR, Nishat N (2019) Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J Iran Chem Soc. 17:1–13

    Google Scholar 

  8. Manikandan E, Kennedy J, Kavitha G, Kaviyarasu K, Maaza M, Panigrahi BK, Kamachi Mudali U (2015) Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications. J Alloys Comp 647:141–145

    Article  CAS  Google Scholar 

  9. Wang X, Li L, Zhang YG, Wang S, Zhang Z, Fei L, Qian Y (2006) High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Cryst Growth Des 6:2163–2165

    Article  CAS  Google Scholar 

  10. Sudhasree S, Shakila Banu A, Brindha P, Kurian GA (2014) Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol Environ Chem 95:743–754

    Article  Google Scholar 

  11. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23:1307–1315

    Article  CAS  Google Scholar 

  12. Zhu J, Gui Z, Ding Y, Wang Z, Hu Y, Zou M (2007) A facile route to oriented nickel hydroxide nanocolumns and porous nickel oxide. J Phys Chem C 111:5622–5627

    Article  CAS  Google Scholar 

  13. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced Ag-C composite for optically functional thin film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  14. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystallineγ-Fe2O3 particles. J Solid State Chem 137:185–190

    Article  CAS  Google Scholar 

  15. Chen DH, Wu SH (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360

    Article  CAS  Google Scholar 

  16. Basak S, Chen DR, Biswas P (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62:1263–1268

    Article  CAS  Google Scholar 

  17. Rahman MA, Radhakrishnan R, Gopalakrishnan R (2018) Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J Alloys Compd 742:421–429

    Article  Google Scholar 

  18. Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698

    Article  CAS  Google Scholar 

  19. Jia F, Zhang L, Shang X, Yang Y (2008) Non-aqueous sol gel approach towards the controllable synthesis of nickel nanospheres, nanowires and nanoflowers. Adv Mater 20:1050–1054

    Article  CAS  Google Scholar 

  20. Nagaraj B, Krishnamurthy NB, Liny P, Divya TK, Dinesh R (2011) Biosynthesis of gold nanoparticles of Ixora coccinea flower extract and their antimicrobial activities. Int J Pharma Bio Sci 2:557–565

    CAS  Google Scholar 

  21. Begum NA, Mondal S, Basu S, Laskara RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloid Surf B 71:113–118

    Article  CAS  Google Scholar 

  22. Nadagouda MN, Varma RS (2006) Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem. 8:516–518

    Article  CAS  Google Scholar 

  23. Kowshik M, Ashtaputre S, Kharrazi S (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  24. Mirza AU, Khan MS, Nami SAA, Kareem A, Rehman S, Bhat SA, Nishat N (2019) Copper oxide nanomaterials derived from zanthoxylum armatum DC, and berberis lycium royle plant species: characterization, assessment of free radical scavenging and antibacterial activity. Chem Biodivers 16:e1900145

    Article  PubMed  Google Scholar 

  25. Ragupathi C, Vijaya JJ, Kennedy LJ (2017) Preparation, characterization and catalytic properties of nickel aluminate nanoparticles: a comparison between conventional and microwave method. J Saudi Chem Soc 21:S231–S239

    Article  CAS  Google Scholar 

  26. Dordel J, Simard SW, Bauhus J, Seely B, Pozas LJ, Prescott C, Hampel H (2010) Trade-offs among establishment success, stem morphology and productivity of underplanted Toona ciliata: effects of nurse-species and thinning density. Forest Ecol Manag 66:1846–1855

    Article  Google Scholar 

  27. Rodrigues LDA, de Castro EM, Pereira FJ, Maluleque IF, Barbosa JPRAD, Rosado SDS (2016) Effects of paclobutrazol on leaf anatomy and gas exchange of Toona ciliata clones. Aust For 79:241–247

    Article  Google Scholar 

  28. Dordel J, Seely B, Simard SW (2011) Relationships between simulated water stress and mortality and growth rates in underplanted Toona ciliata Roem. in subtropical Argentinean plantations. Ecol Model 222:3226–3235

    Article  Google Scholar 

  29. Barolo MI, Mostacero NR, Lopez SN (2014) Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem 164:119–127

    Article  CAS  PubMed  Google Scholar 

  30. Jeong WS, Lachance PA (2001) Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J Food Sci 66:278–281

    Article  CAS  Google Scholar 

  31. Seong-Kuk K, Dong-Ok C, Hee-Jong C (1995) Purification and identification of antimicrobial substances in phenolic fraction of fig leaves. Appl Biol Chem 38:293–296

    Google Scholar 

  32. Khodarahmi GA, Ghasemi N, Hassanzadeh F, Safaie M (2011) Cytotoxic effects of different extracts and latex of Ficus carica L. on HeLa cell line. IJPR 10:273

    PubMed  Google Scholar 

  33. Saeed MA, Sabir AW (2002) Irritant potential of triterpenoids from Ficus carica leaves. Fitoterapia 73:417–420

    Article  CAS  PubMed  Google Scholar 

  34. Shai R, Yoel K, Ruth R, Michael S, Raphael M (2001) Suppressors of cancer cell proliferation from fig (Ficus carica) resin: Isolation and structure elucidation. J Nat Prod 64:993–996

    Article  Google Scholar 

  35. Weiping Y, Hongming C, Tianxin W, Mengshen C (1997) A new coumarin compound with anticancer activity. Chin Trad Herb Drug 28:3–4

    Google Scholar 

  36. Weiping Y, Hongming C, Tianxin W, Mengshen C (1997) Research on the chemical structure and anticancer activity of 9, 19-cyclopropane-24, 25 ethyleneoxide-5-en-3β-spirostol. Chin J Med Chem 7:46–47

    Google Scholar 

  37. Verma VPS, Suri RK (1978) Geographic variation in the chemical composition of turpentine oil of chirpine (PrS). Indian Perfum 22:179–181

    CAS  Google Scholar 

  38. Smaleh M, Sharma OP, Dobhal NP (1976) Chemical composition of turpentine oil from pleoresin (Pinus roxburghii Sargent) Indian oerfumer. Chem For Prod Bran 20:15–19

    Google Scholar 

  39. Rastogi S, Shukla A, Kolhapure SA (2004) Evaluation of the clinical efficacy and safety of RG-01 (Rumalaya gel) in the management of chronic sub-acute inflammatory joint disorder. Med Update 12:31–37

    Google Scholar 

  40. Sharma A, Kolhapure SA (2005) Evaluation of the efficacy and safety of Rumalaya gel in the management of acute and chronic inflammatory musculo skeletal disorders: an open, prospective, noncomparative, phase III clinical trial. Med Update 12:39–45

    Google Scholar 

  41. Khan I, Singh V, Chaudhary AK (2012) Hepatoprotective activity of Pinus roxburghii Sarg. Wood oil against carbon tetrachloride and ethanol induced hepatotoxicity. Bangladesh J Pharmacol 7:94–99

    Article  Google Scholar 

  42. Gupta B, Dass B (2007) Composition of herbage in Pinus roxburghii Sargent stands: basal area and importance value index. Caspian J Env Sci 5:93–98

    Google Scholar 

  43. Kaushik D, Kumar A, Kaushik P, Rana AC, (2012) Analgesic and anti-inflammatory activity of Pinus roxburghii Sarg. Adv Pharmacol Sci 1–6

  44. Puri A, Srivastava AK, Singhal B, Mishra SK, Srivastava S, Lakshmi V (2011) Antidyslipidemic and antioxidant activity of Pinus roxburghii needles. Med Chem Res 20:1589–1593

    Article  CAS  Google Scholar 

  45. Parihar P, Parihar L, Bohra A (2006) Antibacterial activity of extracts of Pinus roxburghii Sarg. Bangladesh J Bot 35:85–86

    Google Scholar 

  46. Mali RG, Wadekar RR (2008) In vitro anthelmintic activity of Baliospermum montanum muell arg roots. Indian J Pharm Sci 70:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nirmal SA, Malwadkar G, Laware RB (2007) Anthelmintic activity of Pongamia glabra Songklanakarin. J Sci Technol 29:755–757

    Google Scholar 

  48. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M (2018) Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cell Nanomed B 46:838–852

    Article  CAS  Google Scholar 

  49. Helan V, Prince JJ, Al-Dhabi NA, Arasu MV, Ayeshamariam A, Madhumitha G, Roopan SM, Jayachandran M (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 6:712–718

    Article  Google Scholar 

  50. Molina-Ocampo LB, Valladares-Cisneros MG, Gonzalez-Rodriguez JG (2015) Using Hibiscus sabdariffa as corrosin inhibitor for Al in 0.5 M H2SO4. Int J Electrochem Sci 10:388–403

    Google Scholar 

  51. Gomez-Ordonez E, Ruperez P (2004) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520

    Article  Google Scholar 

  52. Liu J, Peng R, Yue J, Tian W (2004) Isolation, purification and partial properties of polysaccharides from Angelica sinensis West China. J Pharm Sci 19:412–414

    CAS  Google Scholar 

  53. Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J (2017) Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog 111:375–387

    Article  CAS  PubMed  Google Scholar 

  54. Kganyago P, Mahlaule-Glory LM, Mathipa MM, Ntsendwana B, Mketo N, Hintsho-Mbita MZ, NC, (2018) Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: the physical and biological properties. J Photoch Photobio B 182:18–26

    Article  CAS  Google Scholar 

  55. Rajan PI, Vijaya JJ, Jesudoss SK, Kaviyarasu K, Kennedy LJ, Jothiramalingam R, Al-Lohedan HA, Vaali-Mohammed MA (2018) Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains. Mater Res Express 4:085030

    Article  Google Scholar 

  56. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photoch Photobio B 180:39–50

    Article  Google Scholar 

  57. Anandan K, Rajendran V (2012) Structural, optical and magnetic properties of well dispersed NiO nanoparticles synthesized by CTAB assisted solvothermal process. Int J Nanosci Nanotechnol 2:24–29

    Google Scholar 

  58. Thema FT, Manikandan E, Gurib-Fakim A, Maaza M (2016) Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J Alloy Compd 657:655–661

    Article  CAS  Google Scholar 

  59. Sagadevan S, Podder J (2015) Investigations on structural, optical, morphological and electrical properties of nickel oxide nanoparticles. Int J Nanop 8:289–301

    Article  CAS  Google Scholar 

  60. Lv Y, Huang K, Zhang W, Ran S, Chi F, Yang B, Liu X (2014) High-performance gas-sensing properties of octahedral NiO crystals prepared via one-step controllable synthesis route. Cryst Res Tech 49:109–115

    Article  CAS  Google Scholar 

  61. Baranwal K, Dwivedi LM, Singh V (2018) Guar gum mediated synthesis of NiO nanoparticles: an efficient catalyst for reduction of nitroarenes with sodium borohydride. Int J Biol Macromol 120:2431–2441

    Article  CAS  PubMed  Google Scholar 

  62. Basak G, Das D, Das N (2014) Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans. J Microbiol Biotechnol 24:87–96

    Article  CAS  PubMed  Google Scholar 

  63. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  PubMed  Google Scholar 

  64. Ireland JC, Klostermann P, Rice E, Clark R (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ngoepe NM, Mbita Z, Mathipa M, Mketo N, Ntsendwana B, Hintsho-Mbita NC (2018) Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram Int 44:16999–17006

    Article  CAS  Google Scholar 

  66. Rashid MMO, Ferdous J, Banik S, Islam MR, Uddin AM, Robel FN (2016) Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extract. BMC Complement Altern Med 16:242

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Head, Department of chemistry, Jamia Millia Islamia, New Delhi is acknowledged for providing necessary facilities to carry out the research work. One of the author Azar Ullah Mirza acknowledged UGC-New Delhi for Non-NET Fellowship and also thankful to CIF JMI, USIF AMU, Aligarh and AIIMS, New Delhi for characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Nishat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, A.U., Khan, M.S., Kareem, A. et al. Biomediated synthesis, characterization, and biological applications of nickel oxide nanoparticles derived from Toona ciliata, Ficus carica and Pinus roxburghii. Bioprocess Biosyst Eng 44, 1461–1476 (2021). https://doi.org/10.1007/s00449-021-02528-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02528-4

Keywords

Navigation