Skip to main content

Advertisement

Log in

Mixotrophic growth regime as a strategy to develop microalgal bioprocess from nutrimental composition of tequila vinasses

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The selection of a suitable growth regime can increase the physiological performance of microalgae and improve bioprocess based on these microorganisms from agro-industrial residues. Thus, this study assessed the biotechnology capacity—biomass production, biochemical composition, and nutrient uptake—from tequila vinasses (TVs) as the nutrient source of three indigenous microalgae—Chlorella sp., Scenedesmus sp., and Chlamydomonas sp.—cultured under heterotrophic and mixotrophic conditions. The results demonstrated that under the mixotrophic regime, the three microalgae evaluated reached the highest nitrogen uptake, biomass production, and cell compound accumulation. Under this condition, Chlorella sp. and Scenedesmus sp. showed the highest nutrient uptake and biomass production, 1.7 ± 0.3 and 1.9 ± 0.3 g L−1, respectively; however, the biochemical composition, mainly carbohydrates and proteins, varied depending on the microalgal strain and its growth regime. Overall, our results demonstrated the biotechnological capacity of native microalgae from TVs, which may vary not only depending on the microalgal strain but also the culture strategy implemented and the characteristics of the residue used, highlighting—from a perspective of circular bio-economy—the feasibility of implementing microalgal bioprocess to reuse and valorize the nutrimental composition of TVs through biomass and high-valuable metabolite production, depicting a sustainable strategy for tequila agro-industry in Mexico.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyses during the current study are available from the corresponding author on reasonable request.

References

  1. Chandra R, Iqbal HMN, Vishal G, Lee H-S, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359

    Article  CAS  Google Scholar 

  2. Zhang T-Y, Hu H-Y, Wu Y-H, Zhuang L-L, Xu X-Q, Wang X-X, Dao G-H (2016) Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production. Renew Sustain Energy Rev 60:1602–1614

    Article  CAS  Google Scholar 

  3. Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, Huo S, Cheng P, Liu J, Addy M, Chen P, Chen D, Ruan R (2019) Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol 291:121934

    Article  CAS  Google Scholar 

  4. Nagarajan D, Lee D-J, Chen C-Y, Chang J-S (2020) Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol 302:122817

    Article  CAS  Google Scholar 

  5. Carrilho ENVM, Labuto G, Kamogawa MY (2016) In: Prasad MNV, Shih K (Eds) Environmental mater waste: resource recovery and pollution prevention. Academic Press, USA

  6. López-López A, Davila-Vazquez G, León-Becerril E, Villegas-García E, Gallardo- Valdez J (2010) Tequila vinasses: generation and full scale treatment processes. Rev Environ Sci Biotechnol 9:109–116

    Article  Google Scholar 

  7. Choix FJ, Ochoa-Becerra MA, Hsieh-Lo M, Mondragón-Cortez P, Méndez-Acosta HO (2018) High biomass production and CO2 fixation from biogas by Chlorella and Scenedesmus microalgae using tequila vinasses as culture medium. J Appl Phycol 30:2247–2258

    Article  CAS  Google Scholar 

  8. Candido C, Lombardi AT (2016) Growth of Chlorella vulgaris in treated conventional and biodigested vinasses. J Appl Phycol 29:45–53

    Article  Google Scholar 

  9. Santana H, Cereijo CR, Teles VC, Nascimento CR, Fernandes MS, Brunale P (2017) Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresour Technol 228:133–140

    Article  CAS  Google Scholar 

  10. dos Santos RR, de Araújo O, QF, de Medeiros JL, Chaloub RM, (2016) Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour Technol 204:38–48

    Article  Google Scholar 

  11. Coca M, Barrocal VM, Lucas S, González-Benito G, García-Cubero MT (2015) Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process 94:306–312

    Article  CAS  Google Scholar 

  12. Zuccaro G, Yousuf ABU, Pollio A, Steyer J (2020) In: Yousuf A (Ed) Microalgae cultivation for biofuels production. Academic Press, United Kingdom

  13. Perez-Garcia O, Escalante FME, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  Google Scholar 

  14. Carone M, Corato A, Dauvrin T, Le Thanh T, Durante L, Joris B, Franck F, Remacle C (2019) In: Hallmann A, Rampelotto PH (Eds) Grand Challenges in Algae Biotechnology. Springer, Switzerland

  15. Patel AK, Choi YY, Sim SJ (2020) Emerging prospects of mixotrophic microalgae: way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresour Technol 300:122741

    Article  CAS  Google Scholar 

  16. Pang N, Gu X, Chen S, Kirchhoff H, Lei H, Roje S (2019) Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renew Sustain Energy Rev 112:450–460

    Article  CAS  Google Scholar 

  17. Msanne J, Polle J, Starkenburg S (2020) An assessment of heterotrophy and mixotrophy in Scenedesmus and its utilization in wastewater treatment. Algal Res 48:101911

    Article  Google Scholar 

  18. Nirmalakhandan N, Selvaratnam T, Henkanatte-Gedera SM, Tachida D, Abeysiriwardana-Arachchige ISA, Delanka-Pedige HMK, Lammers PJ (2019) Algal wastewater treatment: photoautotrophic vs mixotrophic processes. Algal Res 41:101569

    Article  Google Scholar 

  19. Ocampo-Alvarez H, Lara-González MA, Choix-Ley FJ, Becerril-Espinosa A, Ayón-Parente M, Enciso-Padilla I, Juárez-Carrillo E (2020) Ensamblaje fitoplanctónico de la laguna de Cajititlán, Jalisco durante el Año 2015. e-CUCBA 13:5–15

    Article  Google Scholar 

  20. Smith DL, Johnson KB, Darmstadt TU (1996) A guide to marine coastal plankton and marine invertebrate larvae. Kendall/Hunt Publishing Company, Iowa

    Google Scholar 

  21. Choix FJ, Polster E, Corona-González RI, Snell-Castro R, Méndez-Acosta HO (2017) Nutrient composition of culture media induces different patterns of CO2 fixation from biogas and biomass production by the microalga Scenedesmus obliquus U169. Bioprocess Biosyst Eng 41:1733–1744

    Article  Google Scholar 

  22. Choix FJ, López-Cisneros CG, Méndez-Acosta HO (2018) Azospirillum brasilenseincreases CO2 fixation on microalgae Scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii cultured on high CO2 concentrations. Microb Ecol 74:430–442

    Article  Google Scholar 

  23. Dubois M, Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  25. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53

    Article  Google Scholar 

  26. Vega BOA, Lovina DV (2017) Métodos y herramientas analíticas en la evaluación de la biomasa microalga. CIBNOR, México

    Google Scholar 

  27. Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129

    Article  CAS  Google Scholar 

  28. Suart B (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Canada

    Book  Google Scholar 

  29. de Melo RG, de Andrade AF, Bezerra RP, Correira DS (2018) Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere 204:344–350

    Article  Google Scholar 

  30. Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manag 240:293–302

    Article  CAS  Google Scholar 

  31. Tasic MB, Bonon AJ, Rocha Barbosa Schiavon MI, Colling Klein B, Veljković VB, Maciel Filho R (2020) Cultivation of Chlamydomonas reinhardtii in anaerobically digested vinasse for bioethanol production. Waste Biomass Valoriz 1–9

  32. Trevisan E, Godoy RFB, Radomski FAD, Crisigiovanni EL, Branco KBZF, Arroyo PA (2020) Chlorella vulgaris growth in different biodigested vinasse concentrations: biomass, pigments and final composition. Water Sci Technol 1–9

  33. Candido C, Lombardi AT (2020) Mixotrophy in green microalgae grown on an organic and nutrient rich waste. World J Microbiol Biotechnol 36:20

    Article  CAS  Google Scholar 

  34. Barclay W, Apt K (2013) In: Richmond A, Hu Q (Eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell Publishing Ltd, New Jersey

  35. Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Alam MA, Mehmood MA (2020) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 704:135303

    Article  CAS  Google Scholar 

  36. Osundeko O, Dean AP, Davies H, Pittman JK (2014) Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol 55:1848–1857

    Article  CAS  Google Scholar 

  37. Quigg A (2016) In: Borowitzka MA, Beardall J, Raven JA (Eds) The physiology of microalgae. Springer, Switzerland.

  38. Caetano N, Melo AR, Gorgich M, Branco-Vierira M, Martins AA, Mata TM (2020) Influence of cultivation conditions on the bioenergy potential and bio-compounds of Chlorella vulgaris. Energy Rep 6:378–384

    Article  Google Scholar 

  39. Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  Google Scholar 

  40. Li T, Yang F, Xu J, Wu H, Mo J, Dai L, Xiang W (2020) Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions. Algal Res 45:101753

    Article  Google Scholar 

  41. Smith JKP, Hughes AD, McEvoy L, Day JG (2020) Tailoring of the biochemical profiles of microalgae by employing mixotrophic cultivation. Bioresour Technol Rep 9:100321

    Article  Google Scholar 

  42. Nzayisenga JC, Eriksson K, Sellstedt A (2018) Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium. Bioresour Technol 257:260–265

    Article  CAS  Google Scholar 

  43. Kong W, Yang S, Wang H, Huo H, Guo B, Liu N, Niu S (2020) Regulation of biomass, pigments, and lipid production by Chlorella vulgaris 31 through controlling trophic modes and carbon sources. J Appl Phycol 32:1569–1579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Francisco J. Choix is grateful to Consejo Nacional de Ciencia y Tecnologia (CONACYT) for the support under the Program-Cátedras CONACYT; external analysis service of CUCEI-UdG for the analysis of TVs, and Diana Fischer for editorial services.

Funding

This study was funded by PROSNI 243338-2018 Program-Universidad de Guadalajara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Choix.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 513 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choix, F.J., Ramos-Ibarra, J.R., Mondragón-Cortez, P. et al. Mixotrophic growth regime as a strategy to develop microalgal bioprocess from nutrimental composition of tequila vinasses. Bioprocess Biosyst Eng 44, 1155–1166 (2021). https://doi.org/10.1007/s00449-021-02512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02512-y

Keywords

Navigation