Skip to main content

Advertisement

Log in

Enhancement of aqueous solubility and antibiofilm activity of 4-allylpyrocatechol by polymeric micelles

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

4-Allylpyrocatechol (APC), a major active compound of Piper betle, possesses strong antimicrobial activity. However, the water-insoluble property of APC limits its clinical and pharmaceutical use. To solve this problem, APC loaded polymeric micelles (PMAC) was fabricated using the thin-film hydration method. Nanoparticles of PMAC were characterized using a photon correlation spectrophotometer and transmission electron microscope (TEM). Antibiofilm activity of PMAC was investigated using crystal violet assay and confocal laser scanning microscopy (CLSM). Cytotoxic effects of PMAC on normal cells were investigated using MTT assay. The results demonstrate that a ratio of APC to the polymer plays an important role in the physicochemical characteristics of PMAC. The most suitable PMAC formulation having a small particle size (38.8 ± 1.4 nm), narrow size distribution (0.28 ± 0.10), a high negative zeta potential (− 16.43 ± 0.55 mV), and high entrapment efficiency (86.33 ± 14.27%) can be obtained from the ratio 1:4. The water solubility of this PMAC is significantly improved, approximately 1,000-fold higher than the unentrapped APC. TEM images demonstrate that PMAC is spherical in shape. The inhibitory effects of PMAC (1.5 mg APC/mL) against Streptococcus intermedius and Streptococcus mutans biofilms are significantly stronger than chlorhexidine (0.06 mg/mL). Images from CLSM demonstrate the destruction and thickness reduction of the pathogenic biofilms after contacting with PMAC. The MTT assay confirms that PMAC at this concentration is non-toxic to normal cells. These results obviously indicate that PMAC is a promising natural and harmless antimicrobial agent suitable for use in the oral cavity for inhibition of pathogenic bacterial biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takahashi N (2005) Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser 1248:103–112

    Article  Google Scholar 

  2. Hurlbutt M, Novy B, Young D (2010) Dental caries : a pH-mediated diseases. Can Dent Hyg Assoc 25(1):9–15

    Google Scholar 

  3. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C (2005) The global burden of oral diseases and risks to oral health. Bull World Health Organ 83(9):661–999

    PubMed  PubMed Central  Google Scholar 

  4. Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42(6):409–418

    Article  CAS  PubMed  Google Scholar 

  5. Brijendra S (2013) Gingivitis–a silent disease. IOSR J Dent Med Sci 6(5):30–33

    Article  Google Scholar 

  6. Dowsett SA, Kowolik MJ, Archila LA, Eckert GJ, LeBlanc DJ (2002) Subgingival microbiota of indigenous Indians of Central America. J Clin Periodontol 29(2):159–167

    Article  CAS  PubMed  Google Scholar 

  7. Idrees MM, Azzeghaiby SN, Hammad MM, Kujan OB (2014) Prevalence and severity of plaque–induced gingivitis in a Saudi adult population. Saudi Med J 35(11):1373–1377

    PubMed  PubMed Central  Google Scholar 

  8. Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B (2018) Oral biofilms from symbiotic to pathogenic interactions and associated disease–connection of periodontitis and rheumatic arthritis by peptidylarginine deiminase. Front Microbiol 9(53):1–14

    Google Scholar 

  9. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40(3):1001–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44(2):331–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jarvinen H, Tenovuo J, Huovinen P (1993) In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 37(5):1158–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S (2017) In vitro antibacterial activity and in vivo therapeutic effect of Sesbania grandiflora in bacterial infected silkworms. Pharm Biol 55:1256–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thanaseelungkoon N, Julsrigival J, Phannachet K, Chansakaow S (2018) Chemical compositions and biological activities of essential oils obtained from some Apiaceous and Lamiaceous plants collected in Thailand Asian Pac. J Trop Med 8:486–494

    Google Scholar 

  15. Okonogi S, Prakatthagomol W, Ampasavate C, Klayraung S (2011) Killing kinetics and bactericidal mechanism of action of Alpinia galanga on food borne bacteria. African J Microbiol Res 5(18):2847–2854

    Article  CAS  Google Scholar 

  16. Pradhan D, Suri KA, Pradhan DK, Biswasroy P (2013) Golden heart of the nature : Piper betle L. J Pharmacogn Phytochem 1(6):147–167

    Google Scholar 

  17. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S (2018) Effects of Piper betle fractionated extracts on inhibition of Streptococcus mutans and Streptococcus intermedius. Drug Discov Ther 12(3):133–141

    Article  CAS  PubMed  Google Scholar 

  18. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S (2017) Potential of Piper betle extracts on inhibition of oral pathogens. Drug Discov Ther 11(6):307–315

    Article  CAS  PubMed  Google Scholar 

  19. Jesonbabu J, Spandana N, Lakshmi KA (2012) In vitro antimicrobial potentialities of chloroform extracts of ethanomedicinal plant against clinically isolated human pathogens. Int J Pharm Pharm Sci 4(3):624–662

    Google Scholar 

  20. Jesonbabu J, Spandana N, Lakshmi KA (2011) The potential activity of hydroxychavicol against pathogenic bacteria. J Bacteriol Parasitol 2(6):2–5

    Article  Google Scholar 

  21. Okonogi S (2018) Nanoparticles of acitve components from plants. O.S.Printing House, Bangkok

    Google Scholar 

  22. Khonkarn R, Mankhetkorn S, Hennink WE, Okonogi S (2011) PEG–OCL micelles for quercetin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 79(2):268–275

    Article  CAS  PubMed  Google Scholar 

  23. Okonogi S (2012) Enhancement of anti–cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discov Ther 6(5):249–255

    CAS  PubMed  Google Scholar 

  24. Tima S, Anuchapreeda S, Ampasavate A, Berkland C, Okonogi S (2017) Stable curcumin–loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL–1 leukemic cells. Eur J Pharm Biopharm 114:57–68

    Article  CAS  PubMed  Google Scholar 

  25. Anantaworasakul P, Okonogi S (2017) Encapsulation of Sesbania grandiflora extract in polymeric micelles to enhance its solubility, stability, and antibacterial activity. J Microencapsul 34(1):73–81

    Article  CAS  PubMed  Google Scholar 

  26. Sze A, Erickson D, Ren L, Li D (2003) Zeta–potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J Colloid Interface Sci 261:402–410

    Article  CAS  PubMed  Google Scholar 

  27. Okonogi S, Holzer W, Unger FM, Viernstein H, Mueller MKK (2016) Anti–inflammatory effects of compounds from Polygonum ordoratum. Nat Prod Commun 11(11):1651–1654

    PubMed  Google Scholar 

  28. Okonogi S, Khonkarn R, Mankhetkorn S, Unger FM, Viernstein H (2013) Antioxidant activity and cytotoxicity of Cyrtosperma johnstonii extracts on drug sensitive and resistant leukemia and small cell lung carcinoma cells. Pharm Biol 51(3):329–338

    Article  CAS  PubMed  Google Scholar 

  29. Razak FA, Rahim ZHA (2003) The anti–adherence effect of Piper betle and Psidium guajava extracts on the adhesion of early settlers in dental plaque to saliva–coated glass surfaces. J Oral Sci 45(4):201–206

    Article  PubMed  Google Scholar 

  30. Nalina T, Rahim ZHA (2006) Effect of Piper betle L. leaf extract on the virulence activity of Streptococcus mutans–an in vitro study. Pak J Biol Sci 9(14):1470–1475

    Article  Google Scholar 

  31. Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  CAS  PubMed  Google Scholar 

  32. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2):1–17

    Article  Google Scholar 

  33. Bhattacharjee S (2016) DLS and zeta potential–what they are and what they are not? J Control Release 235:337–351

    Article  CAS  PubMed  Google Scholar 

  34. Liu W, Guo R (2006) Interaction of flavonoid, quercetin with organized molecular assemblies of nonionic surfactant. Colloids Surf A Physicochem Eng Asp 274(1–3):192–199

    Article  CAS  Google Scholar 

  35. Sharma S, Khan IA, Ali I, Ali F, Kumar M, Kumar A, Johri RK, Abdullah ST, Bani S, Pandey A, Suri KA, Gupta BD, Satti NK, Dutt P, Qazi GN (2009) Evaluation of the antimicrobial, antioxidant, and anti–inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrob Agents Chemother 53(1):216–222

    Article  CAS  PubMed  Google Scholar 

  36. Gilbert JC, Hadgraft J, Bye A, Brookes LG (1986) Drug release from Pluronic F–127 gels. Int J Pharm 32(2–3):223–228

    Article  CAS  Google Scholar 

  37. Sezgin Z, Yuksel N, Baykara T (2006) Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 64(3):261–268

    Article  CAS  PubMed  Google Scholar 

  38. Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W (2012) Benjakul R (2012) In vitro characterization of Pluronic F127 and D–α–tocopheryl polyethylene glycol 1000 succinate mixed micelles as nanocarriers for targeted anticancer-drug delivery. J Nanomater 916573:1–11

    Article  Google Scholar 

  39. Patil PH, Wankhede PR, Mahajan HS, Zawar LR (2018) Aripiprazole–loaded polymeric micelles: fabrication, optimization and evaluation using response surface method. Recent Pat Drug Deliv Formul 12(1):53–64

    Article  CAS  PubMed  Google Scholar 

  40. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8(2):263–271

    Article  CAS  PubMed  Google Scholar 

  41. Khonkarn R, Mankhetkorn S, Talelli M, Hennink WE, Okonogi S (2012) Cytostatic effect of xanthone-loaded mPEG-bp (HPMAm-Lac2) micelles towards doxorubicin sensitive and resistant cancer cells. Colloids Surfaces B Biointerfaces 94:266–273

    Article  CAS  PubMed  Google Scholar 

  42. Khonkarn R, Mankhetkorn S, Hennink WE, Okonogi S (2011) PEG-OCL micelles for quercetin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 79:268–275

    Article  CAS  PubMed  Google Scholar 

  43. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60(1):151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cerca N, Gomes F, Pereira S, Teixeira P, Oliveira R (2012) Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. BMC Res Notes. 5:1–7

    Article  Google Scholar 

  45. Phumat P, Khongkhunthian S, Wanachantararak P, Okonogi S (2020) Comparative inhibitory effects of 4-allylpyrocatechol isolated from Piper betle on Streptococcus intermedius, Streptococcus mutans, and Candida albicans. Arch Oral Biol Elsevier 113:1–10

    Google Scholar 

  46. Harrison JJ, Ceri H, Yerly J, Stremick CA, Hu Y, Martinuzzi R et al (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online 8:194–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fulaz S, Vitale S, Quinn L, Casey E (2019) Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends Microbiol 27(11):915–926

    Article  CAS  PubMed  Google Scholar 

  48. Tabatabaei FS, Moezizadeh M, Javand F (2015) Effects of extracts of Salvadora persica on proliferation and viability of human dental pulp stem cells. J Conserv Dent 18(4):315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rodrigues S, Dionísio M, López CR, Grenha A (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rezvanian M, Amin MCIM, Ng SF (2016) Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr Polym 137:295–304

    Article  CAS  PubMed  Google Scholar 

  51. Tima S, Okonogi S, Ampasavate C, Berkland C, Anuchapreeda S (2019) FLT3-specific curcumin micelles enhance activity of curcumin on FLT3-ITD overexpressing MV4-11 leukemic cells. Drug Dev Ind Pharm 45:498–505

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Research Center of Pharmaceutical Nanotechnology, Chiang Mai University for their partial support. We also thank the Faculty of Pharmacy and Faculty of Dentistry, Chiang Mai University for facility and equipment supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriporn Okonogi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okonogi, S., Phumat, P. & Khongkhunthian, S. Enhancement of aqueous solubility and antibiofilm activity of 4-allylpyrocatechol by polymeric micelles. Bioprocess Biosyst Eng 44, 1289–1300 (2021). https://doi.org/10.1007/s00449-020-02501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02501-7

Keywords

Navigation