Skip to main content

Cytotoxicity against human breast carcinoma cells of silver nanoparticles biosynthesized using Capsosiphon fulvescens extract

Abstract

Targeting cancer cells with small nanoparticles is a novel and promising approach to cancer therapy. Breast cancer is the most common cancer afflicting women worldwide. In the present study, silver nanoparticles (AgNPs) were synthesized using the aqueous extract of the marine alga Capsosiphon (C.) fulvescens, and the cytotoxicity and anti-cancer activities of the nanoparticles against MCF-7 breast cancer cells were analyzed. Nanoparticle formation was confirmed by solution color change and UV–Vis spectroscopy. The size and distribution of the C. fulvescens-biosynthesized silver nanoparticles (CfAgNPs) were then examined using various analytical methods; the particle size was around 20–22 nm and spherical in shape with no agglomeration. Cytotoxicity analysis revealed that the inhibitory concentration (IC50) of CfAgNPs was 50 μg/ml. MCF-7 cell viability decreased with increasing concentrations of CfAgNPs. MCF-7 cells were evaluated for morphological changes before and after treatment with the CfAgNPs; cells treated with C. fulvescens aqueous algal extract (without CfAgNPs) showed irregular confluent aggregates with round polygonal cells, similar to the untreated control. Tamoxifen- (TMX) and CfAgNPs-treated cells show significant morphological changes. An apoptosis study was conducted using 4′,6-diamidino-2-phenylindole (DAPI) staining, in which CfAgNP-treated MCF-7 cells generated bright blue fluorescence and shortened, disjointed chromatin was evident; control cells displayed less bright fluorescence. Flow cytometry analysis revealed that the percentage of cells in late apoptosis was high following treatment with TMX (77.2%) and CfAgNP (74.6%). A novel anti-cancer agent, developed by generating silver nanoparticles from C. fulvescens extract, showed strong cytotoxic activity against MCF-7 cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:1–12. https://doi.org/10.1155/2012/751075

    Article  CAS  Google Scholar 

  2. Burdușel A-C, Gherasim O, Grumezescu AM et al (2018) Biomedical applications of silver nanoparticles : an up-to-date overview. Nanomaterials 8:1–24. https://doi.org/10.3390/nano8090681

    Article  CAS  Google Scholar 

  3. Wang ZX, Chen CY, Wang Y, Li FXZ, Huang J, Luo ZW et al (2019) Ångstrom scale silver particles as a promising agent for low toxicity broad spectrum potent anticancer therapy. Adv Funct Mater 29:1808556. https://doi.org/10.1002/adfm.201808556

    Article  CAS  Google Scholar 

  4. Lin J, Huang Z, Wu H et al (2014) Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10:2006–2020. https://doi.org/10.4161/auto.36293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pei J, Fu B, Jiang L, Sun T (2019) Effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine 14:1969–1978. https://doi.org/10.2147/IJN.S188235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asgary V, Shoari A, Baghbani-Arani F, Sadat Shandiz SA, Khosravy MS, Janani A et al (2016) Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. Int J Nanomedicine 11:3597–3605. https://doi.org/10.2147/IJN.S109098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dattatraya G, Rijuta S, Saratale G (2017) Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci 28:1709–1727. https://doi.org/10.1007/s10876-017-1179-z

    Article  CAS  Google Scholar 

  8. Torre LA, Bray F, Siegel RL, Ferlay J (2015) Global cancer statistics.CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

  9. Curado MP (2011) Breast cancer in the world: incidence and mortality. Salud Publica Mex 53:372–384. https://doi.org/10.1590/S0036-36342011000500005

    Article  PubMed  Google Scholar 

  10. Ferlay J (2018) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. https://doi.org/10.1002/ijc.31937

    Article  PubMed  Google Scholar 

  11. Rezakhani L, Rashidi Z, Mirzapur P, Khazaei M (2014) Antiproliferatory effects of crab shell extract on breast cancer cell line (MCF7). J Breast Cancer 17:219–225. https://doi.org/10.4048/jbc.2014.17.3.219

    Article  PubMed  PubMed Central  Google Scholar 

  12. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. Pharmanext ACS Nano 3:16–20. https://doi.org/10.1021/nn900002m

    Article  CAS  PubMed  Google Scholar 

  13. Petros RA, Desimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627. https://doi.org/10.1038/nrd2591

    Article  CAS  PubMed  Google Scholar 

  14. Bi HL, Xu J, Tan AJ, Huang YP (2016) CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. Insect Sci 23:469–477. https://doi.org/10.1111/1744-7917.12341

    Article  CAS  PubMed  Google Scholar 

  15. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Controlled Release 200:138–157. https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  CAS  Google Scholar 

  16. Suresh AK, Pelletier DA, Wang W et al (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–2735. https://doi.org/10.1021/la2042058

    Article  CAS  PubMed  Google Scholar 

  17. Mayer AMS, Gustafson KR (2008) Marine pharmacology in 2005–2006: antitumour and cytotoxic compounds. Eur J Cancer 44:2357–2387. https://doi.org/10.1016/j.ejca.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ulagesan S, Jeong T, Youn N, Choi H (2020) Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02454-x

    Article  PubMed  Google Scholar 

  19. Abdullah MA, Ahmad A, Shah SMU et al (2016) Integrated algal engineering for bioenergy generation, effluent remediation, and production of high-value bioactive compounds. Biotechnol Bioprocess Eng 21:236–249. https://doi.org/10.1007/s12257-015-0388-2

    Article  CAS  Google Scholar 

  20. Lezcano V, Fernández C, Parodi ER, Morelli S (2018) Antitumor and antioxidant activity of the freshwater macroalga Cladophora surera. J Appl Phycol 30:2913–2921. https://doi.org/10.1007/s10811-018-1422-5

    Article  CAS  Google Scholar 

  21. Kannan RRR, Arumugam R, Anantharaman P (2010) Antibacterial potential of three seagrasses against human pathogens. Asian Pac J Trop Med 3:890–893. https://doi.org/10.1016/S1995-7645(10)60214-3

    Article  Google Scholar 

  22. Tong T, Ko DO, Kim BS et al (2015) Beneficial effect of seaweed on high-fat diet-induced oxidative stress and insulin resistance in rats. Food Sci Biotechnol 24:2185–2191. https://doi.org/10.1007/s10068-015-0291-9

    Article  CAS  Google Scholar 

  23. Sharma BR, Rhyu DY (2014) Anti-diabetic effects of Caulerpa lentillifera : stimulation of insulin secretion in pancreatic β cells and enhancement of glucose uptake in adipocytes. Asian Pac J Trop Biomed https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0091

  24. Hwang H, Kwon M, Kim I, Nam T (2008) The effect of polysaccharide extracted from the marine alga Capsosiphon fulvescens on ethanol administration. Food Chem Toxicol 46:2653–2657. https://doi.org/10.1016/j.fct.2008.04.027

    Article  CAS  PubMed  Google Scholar 

  25. Oh JH, Nam TJ, Choi YH (2020) Capsosiphon fulvescens glycoproteins enhance probiotics-induced cognitive improvement in aged rats. Nutrients 12:837. https://doi.org/10.3390/nu12030837

    Article  CAS  PubMed Central  Google Scholar 

  26. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122. https://doi.org/10.1007/s10853-008-2745-4

    Article  CAS  Google Scholar 

  27. Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212. https://doi.org/10.3727/095535491820873191

    Article  CAS  PubMed  Google Scholar 

  28. Nigjeh SE, Yusoff FM, Banu N et al (2013) Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. Biomed Res Int 2013:1–9. https://doi.org/10.1155/2013/783690

    Article  Google Scholar 

  29. Kapuscinski J (1995) DAPI: a DMA-specific fluorescent probe. Biotech Histochem 70:220–233. https://doi.org/10.3109/10520299509108199

    Article  CAS  PubMed  Google Scholar 

  30. Koopman G, Reutelingsperger CPM, Kuijten GAM, Keehnen PST, Oers V (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    Article  CAS  Google Scholar 

  31. Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–2894. https://doi.org/10.1039/B105058N

    Article  CAS  Google Scholar 

  32. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23. https://doi.org/10.1016/j.saa.2012.09.042

    Article  CAS  PubMed  Google Scholar 

  33. Gajendran B, Chinnasamy A, Durai P et al (2014) Biosynthesis and characterization of silver nanoparticles from Datura inoxia and its apoptotic effect on human breast cancer cell line MCF7. Mater Lett 122:98–102. https://doi.org/10.1016/j.matlet.2014.02.003

    Article  CAS  Google Scholar 

  34. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. https://doi.org/10.1016/j.addr.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  35. Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976. https://doi.org/10.1021/acsami.6b00161

    Article  CAS  PubMed  Google Scholar 

  36. Parida UK, Biswal SK, Bindhani BK (2014) Green synthesis and characterization of gold nanoparticles: study of its biological mechanism in human SUDHL-4 cell line. Adv Biol Chem 04:360–375. https://doi.org/10.4236/abc.2014.46041

    Article  Google Scholar 

  37. Harishkumar S, Satyanarayan ND, Santhosha SM (2018) Antiproliferative and in silico admet study of new 4-(Piperidin-1-ylmethyl)-2- (thiophen-2-yl) quinoline analogues. Asian J Pharm Clin Res https://doi.org/10.22159/ajpcr.2018.v11i4.24147

  38. Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B Biointerfaces 76:50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  39. Inbathamizh L, Ponnu TM, Mary EJ (2013) In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J Pharm Res 6:32–38. https://doi.org/10.1016/j.jopr.2012.11.010

    Article  CAS  Google Scholar 

  40. Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143–148

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Supraja N, Dhivya J, Prasad TNVKV, David E (2018), Synthesis characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against breast cancer cells (MCF 7) cell line. Adv Nano Res https://doi.org/10.12989/anr.2018.6.2.183

  42. Kim EY, Choi YH, Lee JI et al (2015) Antioxidant activity of oxygen evolving enhancer protein 1 purified from Capsosiphon fulvescens. J Food Sci 80:H1412–H1417. https://doi.org/10.1111/1750-3841.12883

    Article  CAS  PubMed  Google Scholar 

  43. Kim YM, Kim IH, Nam TJ (2013) Inhibition of AGS human gastric cancer cell invasion and proliferation by Capsosiphon fulvescens glycoprotein. Mol Med Rep 8:11–16. https://doi.org/10.3892/mmr.2013.1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran 19:926–929. https://doi.org/10.1016/j.scient.2012.01.010

    Article  CAS  Google Scholar 

  45. Nyquist RA, Kagel RO (1996) Handbook of infrared and Raman spectra of inorganic compounds and organic salts. Elsevier, USA, p 500

    Google Scholar 

  46. Selvi BCG, Madhavan J, Santhanam A (2016) Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Adv Nat Sci Nanosci Nanotechnol 7:1–8. https://doi.org/10.1088/2043-6262/7/3/035015

    Article  CAS  Google Scholar 

  47. Tabata Y, Ikada Y (1988) Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo and copolymers. J Biomed Mater Res 22:837–858. https://doi.org/10.1002/jbm.820221002

    Article  CAS  PubMed  Google Scholar 

  48. Schlinkert P, Casals E, Boyles M et al (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnology 13:1–18. https://doi.org/10.1186/s12951-014-0062-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Atasever-Arslan B, Yilancioglu K, Kalkan Z et al (2016) Screening of new antileukemic agents from essential oils of algae extracts and computational modeling of their interactions with intracellular signaling nodes. Eur J Pharm Sci 83:120–131. https://doi.org/10.1016/j.ejps.2015.12.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (Grant No. 2012R1A6A1028677).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taek-Jeong Nam or Youn-Hee Choi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ulagesan, S., Nam, TJ. & Choi, YH. Cytotoxicity against human breast carcinoma cells of silver nanoparticles biosynthesized using Capsosiphon fulvescens extract. Bioprocess Biosyst Eng 44, 901–911 (2021). https://doi.org/10.1007/s00449-020-02498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02498-z

Keywords

  • Breast cancer
  • Capsosiphon fulvescens
  • Marine algae
  • Silver nanoparticles
  • Cytotoxicity
  • Anticancer activity