Skip to main content

Advertisement

Log in

A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO2 nanoparticles for antibacterial and anticancer activities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Titanium dioxide nanoparticles exhibit good anticancer and antibacterial activities. They are known to be environmentally friendly, stable, less toxic, and have excellent biocompatibility nature. Due to these properties, they are well suited for biological applications particularly in biomedical applications such as drug delivery and cancer therapy. In this research article, three medicinal herbs namely, Plectranthus amboinicus (Karpooravalli), Phyllanthus niruri (Keezhanelli), and Euphorbia hirta (Amman Pacharisi), were used to modify the surface of the TiO2 nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques. The samples are then subjected to MTT assay to determine cell viability. KB oral cancer cells are used for the determination of the anticancer nature of the pure and bio modified nanoparticles. It is observed that Plectranthus amboinicus–Phyllanthus niruri modified TiO2 nanoparticles exhibit excellent anticancer activities among other bio modified and pure samples. The samples are then examined for antibacterial activities against three Gram-negative bacterial strains namely, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and two Gram-positive bacterial strains namely, Staphylococcus aureus and Streptococcus mutans, respectively. Among the modified and pure samples, Plectranthus amboinicus showed good antibacterial activity against Gram-positive and Gram-negative bacteria. In the Flow cytometry analysis, the generation of p53 protein expression from Plectranthus amboinicusPhyllanthus niruri modified TiO2 nano herbal particles shows the anti-cancerous nature of the sample. Then to determine the toxic nature of the Plectranthus amboinicusPhyllanthus niruri modified TiO2 nano herbal particles against normal cells, the NPs were subjected to MTT assay against normal L929 cells, and it was found to be safer and less toxic towards the normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Singh KRB, Nayak V, Sarkar T, Singh RP (2020) Cerium oxide nanoparticles: properties, biosynthesis and biomedical applications. RSC Adv 10:27194–27214

    Article  CAS  Google Scholar 

  2. Liong M, France M, Bradley KA, Zink JI (2009) Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater 21:1684–1689

    Article  CAS  Google Scholar 

  3. Copcia VE, Luchian C, Dunca S, Bilba N, Hristodor CM (2011) Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci 46:7121–7128

    Article  CAS  Google Scholar 

  4. Ren G, Hu D, Cheng EWC, Vargas - Reus M A, Reip P and Allaker R P, (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  5. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  PubMed  Google Scholar 

  6. Bergs C, Bruck L, Rosencrantz RR, Conrads G, Elling L, Pich A (2017) Biofunctionalized zinc peroxide (ZnO2) nanoparticles as active oxygen sources and antibacterial agents. RSC Adv 7:38998–39010

    Article  CAS  Google Scholar 

  7. Borda d’ AguaBranquinhoDuarteMauricioFernandoMartinsFortunato RRMPEALRE (2018) Efficient coverage of ZnO nanoparticles on cotton fibers for antibacterial finishing using a rapid and low cost in situ synthesis. New J Chem 42:1052–1060

    Article  Google Scholar 

  8. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  9. Yadid M, Feiner R, Dvir T (2019) Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett 19:2198–2206

    Article  CAS  PubMed  Google Scholar 

  10. Boopathi S, Gopinath S, Boopathi T, Balamurugan V, Rajeshkumar R, Sundararaman M (2012) Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments. Ind Eng Chem Res 51:5976–5985

    Article  CAS  Google Scholar 

  11. de Gil EL, Leret P, Serrano MM, Reinosa JJ, Enriquez E, Campo AD, Canete M, Menendez J, Fernandez JF, Marcos FR (2018) ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physicochemical interactions. ACS Appl Nanomater 1:3214–3225

    Google Scholar 

  12. Stankovic A, Dimitrijevic S, Uskokovic D (2013) Influence of size scale andmorphology on antibacterial properties of ZnO powders hydrothermally synthesized using different surface stabilizing agents. Colloids Surf B 102:21–28

    Article  CAS  Google Scholar 

  13. Tang ZX, Fang XJ, Zhang ZL, Pan LX, Zhang XY, Pan QQ, Shi LE (2012) Preparation of nano-CaO using sonication method. J Chem Soc Pak 34:1423–1425

    CAS  Google Scholar 

  14. Wei C, Lin WY, Zainal Z, William NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: towards solar-assisted water disinfection system. Environ Sci Technol 28:934–938

    Article  CAS  PubMed  Google Scholar 

  15. Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sree lathaReddyMuthukondaSrikanthLomada TMCSVVVSSD (2017) In vitro and in vivo evaluation of anticancer activity: shape-dependent properties of TiO2 nanostructures. Mater Sci Eng C 78:969–977

    Article  Google Scholar 

  17. Selvakumari D, Deepa R, Mahalakshmi V, Subhashini P, Lakshminarayan N (2015) Anticancer activity of ZnO nanoparticles on MCF7 (breast cancer cell) and A549 (lung cancer cell). ARPN J Eng Appl Sci 10:5418–5421

    Google Scholar 

  18. Moustafa IMI, Saleh IA, Abdelhamid MR (2017) Synthesis of MgO nanoparticles from different organic precursors; catalytic decontamination of organic pollutants and antitumor activity. J Mater Sci Eng 6:1000359

    Google Scholar 

  19. Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J (2017) Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225

    Article  CAS  Google Scholar 

  20. Sun Z, Wang W, Wang R, Duan J, Hu Y, Ma J, Zhou J, Xie S, Lu X, Zhu Z, Chen S, Zhao Y, Xu H, Wang C, Yang XD (2010) Aluminium nanoparticles enhance anticancer immune response induced by tumor cell vaccine. Cancer Nanotechnol 1:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karunagaran V, Rajendran K, Sen S (2017) Optimization of biosynthesis of silver oxide nanoparticles and its anticancer activity. Int J Nanosci 16:1750018

    Article  CAS  Google Scholar 

  22. Leshuk T, Parviz R, Everett P, Krishnakumar H, Varin RA, Frank GuF (2013) Photocatalytic activity of hydrogenated TiO2. ACS Appl Mater Inter 5:1892–1895

    Article  CAS  Google Scholar 

  23. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Bahnemann AMDW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  24. Benavides JA, Trudeau CP, Gerlein LF, Cloutier SG (2018) Laser selective photoactivation of amorphous TiO2 films to anatase and/or rutile crystalline phases. ACS Appl Energy Mater 1:3607–3613

    Article  CAS  Google Scholar 

  25. Sidhik S, Pasaran AC, Esparza D, Luke TL, Carriles R, Rosa EDL (2018) Improving the optoelectronic properties of mesoporous TiO2 by cobalt doping for high perfomance hysteresis-free perovskite solar cells. Appl Mater Inter 10:3571–3580

    Article  CAS  Google Scholar 

  26. Tan B, Wu Y (2006) Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B 110:15932–15938

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Ito S, Gratzel M, Santiago FF, Sero IM, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–25221

    Article  CAS  PubMed  Google Scholar 

  28. Ziental D, Goslinska BC, Mlynarczyk DT, Sobotta AG, Stanisz B, Goslinkski T, Sobotta L (2020) Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomater 10:387

    Article  CAS  Google Scholar 

  29. Ripolles-Avila C, Martinez-Garcia M, Hascoët A-S, Rodríguez-Jerez JJ (2019) Bactericidal efficacy of UV activated TiO2 nanoparticles against Gram-positive and Gram-negative bacteria on suspension. CyTA J Food 17:408–418

    Article  CAS  Google Scholar 

  30. Koneiczna PR, Wanag A, Sienkiewicz A, Nejman EK, Morawski AW (2020) Antibacterial effect of TiO2 nanoparticles modified with APTES. Catal Commun 134:105862

    Article  Google Scholar 

  31. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  32. Qiang ZX, Hong YL, Meng T, Pu PY (2011) ZnO, TiO2, SiO2 and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24:661–669

    Google Scholar 

  33. Nosaka Y, Nosaka AY (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem Rev 117:11302–11336

    Article  CAS  PubMed  Google Scholar 

  34. Huang H, Xiao K, He Y, Zhang T, Dong F, Du X, Zhang Y (2016) In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl Catal B Environ 199:75–86

    Article  CAS  Google Scholar 

  35. Huang H, Han X, Li X, Wang S, Chu PK, Zhang Y (2015) Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Mater Inter 7:482–492

    Article  CAS  Google Scholar 

  36. Etacheri V, Michlits G, Seery MK, Hinder SJ, Pillai SC (2013) A highly efficient TiO2-xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl Mater Interfaces 5:1663–1672

    Article  CAS  PubMed  Google Scholar 

  37. Hu C, Lan Y, Qu J, Hu X, Wang A (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. J Phys Chem B 110:4066–4072

    Article  CAS  PubMed  Google Scholar 

  38. Battin TJ, Kammer FV, Weilhartner D, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104

    Article  CAS  PubMed  Google Scholar 

  39. Chakra CS, Rajendar V, Rao KV, Kumar M (2017) Enhanced antimicrobial and anticancer properties of ZnO and TiO2 nanocomposites. Biotech 7(1–8):89

    Google Scholar 

  40. Maheswari P, Ponnusamy S, Harish S, Muthamizhchelvan C, Hayakawa Y (2020) Syntheses and characterization of Syzygium aromaticum, Elettaria cardamomum andCinnamomum verum modified TiO2 and their biological applications. Mater Sci Semicond Process 105:104724

    Article  CAS  Google Scholar 

  41. Alavijeh KP, Alavijeh KP, Sharma D (2012) A study of antimicrobial activity of few medicinal herbs. Asian J Plant Sci Res 2:496–502

    Google Scholar 

  42. Amrita V, Sonal D, Shalini R (2009) Antibacterial effect of herbs and spices extract on Escherichia coli. Electron J Bio 5:40–44

    Google Scholar 

  43. Saklani S, Kawra M, Parcha V (2019) Herbal-derived anticancer phytoconstituents: tradition to molecular mechanisms. Int J Pharm Sci Res 10:1632–1639

    CAS  Google Scholar 

  44. Sawant R, Baghkar A, Jagtap S, Harad L, Chavan A, Khan NA, Yevale PR, Kale KM (2018) A review on—herbs in anticancer. Asian J Res Pharm Sci 8:179–184

    Google Scholar 

  45. Terto MVC, Gomes JM, DAraujo DIAF, Silva TS, Ferreira JM, Souza JJN, Silva MS, Tavares JF (2020) Photoprotective activity of Plectranthus amboinicus extracts and HPLC quantification of rosmarinic acid. Rev Bras Farmacogn 30:183–188

    Article  CAS  Google Scholar 

  46. Sangam KP, Kumar N (2020) Plectranthus amboinicus: a review on its pharmacological and pharmacognostical studies. A J Physiol Biochem Pharmacol 10:55–62

    Article  Google Scholar 

  47. Jantan I, Haque MA, Ilangkovan M, Arshad L (2019) An insight into the modulatory effects and mechanisms of action of Phyllanthus species and their bioactive metabolites on the immune system. Front Pharmacol 10:878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gupta M, Vaghela JS (2019) Recent advances in pharmacological and phytochemistry studies on Phyllanthus amarus. PBJ 7:1–8

    Article  CAS  Google Scholar 

  49. Tuhin RH, Begum MM, Rahman MS, Karim R, Begum T, Ahmed SU, Mostofa R, Hossain A, Daim MA, Begum R (2017) Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement Altern Med 17:423

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kausar J, Muthumani D, Hedina A, Sivasamy, Anand V (2016) Review of the phytochemical and pharmacological activities of Euphorbia hirta Linn. Phcog J 8:310–313

    Article  CAS  Google Scholar 

  51. Ragasa CY, Sangalang V, Pendon Z, Rideout JA (1999) Antimicrobial flavones from Coleus amboinicus, Philippine. J Sci 128:347–351

    CAS  Google Scholar 

  52. Gurgel AP, Da Silva JG, Grangeiroa ARS, Oliveira DC, Limaa CMP, Da Silvaa ACP, Oliveira RAG, Souzac IA (2009) In vivo study of the anti- inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J Ethnopharmacol 125:361–363

    Article  PubMed  Google Scholar 

  53. Sunitha J, Krishna S, Ananthalakshmi R, Jeeva JS, Girija AS, Jeddy N (2017) Antimicrobial effect of leaves of Phyllanthus niruri and Solanum nigrum on caries causing bacteria: an in vitro study. J Clin Diagn Res 11:KC01–KC04

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pasha F, Irfan S (2011) A Study on antimicrobial properties of Phyllanthus niruri and Ocimum sanctum. Biomed Pharmacol J 4:297–299

    Article  Google Scholar 

  55. Dai M, Wahyuni AS, AzizahSuhendiSaifudin DKITTA (2016) Antioxidant activity of Phyllanthus niruri L. herbs: in vitro and in vivo models and isolation of active compound. Natl J Physiol Pharm Pharmacol 6:32–37

    Article  CAS  Google Scholar 

  56. Lee CD, Ott M, Thygarajan SP, Shfritz DA, Burk RD, Gupta S (2006) Phyllanthus amarus down-regulates hepatitis B virus mRNA transcription and translation. Eur J Clin Invest 26:1069–1076

    Article  CAS  Google Scholar 

  57. Koli MC, Choudhary R, Kumar S, Thakur S, Shukla D, Saxena RC (2002) An isoflavone glycoside from the stem of Euphorbia hirta Linn as antimalarial compound. Chem Asian J 14:1673–1677

    CAS  Google Scholar 

  58. Karimian A, Ahmadi Y, Yousefi B (2016) Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 42:63–71

    Article  CAS  PubMed  Google Scholar 

  59. Kaneko EY, Pulcinelli SH (2002) Sol-gel synthesis of titania–alumina catalyst supports. Appl Catal A 235:71–78

    Article  CAS  Google Scholar 

  60. Moon J, Takagi H, Fujishiro Y, Awano M (2001) Preparation and characterization of the Sb doped TiO2 photocatalysts. J Mater Sci 36:949–955

    Article  CAS  Google Scholar 

  61. Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5:1231–1236

    Article  CAS  PubMed  Google Scholar 

  62. Mamakhel A, Tyrsted C, Bøjesen ED, Hald P, Iversen BB (2013) Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method. Cryst Growth Des 13:4730–4734

    Article  CAS  Google Scholar 

  63. Arunmetha S, Manivasakan P, Karthik A, Dhinesh Babu NR, Srither SR, Rajendran V (2013) Effect of processing methods on physicochemical properties of titania nanoparticles produced from natural rutile sand. Adv Powder Technol 24:972–979

    Article  CAS  Google Scholar 

  64. Tam KH, Cheung CK, Leung YH, Djurisic AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Philips DL, Ding L, Ge WK (2006) Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B 110:20865–20871

    Article  CAS  PubMed  Google Scholar 

  65. Maheswari P, Ponnusamy S, Harish S, Ganesh MR, Hayakawa Y (2020) Hydrothermal synthesis of pure and bio modified TiO2: characterization, evaluation of antibacterial activity against Gram positive and Gram negative bacteria and anticancer activity against KB Oral cancer cell line. Arab J Chem 13:3484–3497

    Article  CAS  Google Scholar 

  66. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37:163–176

    Article  CAS  PubMed  Google Scholar 

  67. Nainani R, Taker P, Chaska M (2012) Synthesis of silver doped TiO2 nanoparticles for the improved photocatalytic degradation of methyl orange. J Mater Sci Eng B 2(1):52–58

    CAS  Google Scholar 

  68. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2012) Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci 7:4871–4888

    CAS  Google Scholar 

  69. Pal M, Pal U, Jimenez JMGY, Perez-Rodriguez F (2012) Effects of crystallization and dopant concentration on the emission behaviour of TiO2: Eu nanophosphors. Nanosc Res Lett 7:1–12

    Article  Google Scholar 

  70. Hong SM, Lee S, Jung HJ, Yu Y, Shin JH, Kwon KY, Choi MY (2013) Simple preparation of anatase TiO2 nanoparticles via pulsed laser ablation in liquid. Bull Korean Chem Soc 34:279–282

    Article  CAS  Google Scholar 

  71. Ushamani M, Renuka MR (2017) Green synthesis, characterization and antibacterial property of silver nanoparticles using Ocimum tenuiflorum, Azadirachta indica and Plectranthus amboinicus leaf extracts. IJSRP 7:551–555

    Google Scholar 

  72. Senarathna ULNH, Fernando SSN, Gunasekara TDCP, Weerasekera MM, Hewageegana HGSP, Arachchi NDH, Siriwardena HD, Jayaweera PM (2017) Enhanced antibacterial activity of TiO2 nanoparticles surface modified with Garcinia zeylanica extract. Chem Cent J 11:1–7

    Article  Google Scholar 

  73. Huang H, Li X, Wang J, Dong F, Chu PK, Zhang T, Zhang Y (2015) Anionic group self- doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32−-doped Bi2O2CO3. ACS Catal 5:4094–4103

    Article  CAS  Google Scholar 

  74. Huang H, Xiao K, Yu H, Dong F, Zhang T, Zhang Y (2016) Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chem Commun 52:354–357

    Article  CAS  Google Scholar 

  75. Huang H, Tu S, Zeng C, Zhang T, Reshak AH, Zhang Y (2017) Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew Chem Int Ed 56:11860–11864

    Article  CAS  Google Scholar 

  76. Faure B, Alvarez GS, Ahniyaz A, Villaluenga I, Berriozabal G, Miguel YRD, Bergstrom L (2013) Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater 14:1–23

    Article  Google Scholar 

  77. Valderrama ACS, De Rojas GC (2017) Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR. Am J Analyt Chem 8:726–741

    Article  CAS  Google Scholar 

  78. Hanh ND, Sinchaipanid N, Mitrevej A (2013) Physicochemical characterization of phyllanthin from Phyllanthus amarus Schum. et Thonn. Drug Dev Ind Pharm 40:793–802

    Article  PubMed  Google Scholar 

  79. Aisyah LS, Yun YF, Julaeha E, Herlina T, Zainuddin A, Hermawan W, Supratman U, Hayashi H (2015) Flavonoids from the fresh leaves of Kalanchoe tomentosa (Crassulaceae). Open Chem 2:36–39

    Article  Google Scholar 

  80. Catauro M, Papale F, Bollino F, Piccolella S, Marciano S, Nocera P, Pacifico S (2015) Silica/quercetin sol–gel hybrids as antioxidant dental implant materials. Sci Technol Adv Mat 16:1–11

    Article  CAS  Google Scholar 

  81. Pan H, Wang XD, Xiao S, Yu LG, Zhang ZJ (2013) Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Indian J Eng Mat S 20:561–567

    CAS  Google Scholar 

  82. Malini M, Abirami G, Hemalatha V, Annadurai G (2013) Antimicrobial activity of ethanolic and aqueous extracts of medicinal plants against waste water pathogens. Int J Res Pure Appl Microbiol 3:40–42

    Google Scholar 

  83. Valarmathy K, Gokulakrishnan M, Salma Kausar M, Paul K (2010) A study of antimicrobial activity of ethanolic extracts of various plant leaves against selected microbial species. IJPSR 8:293–295

    Google Scholar 

  84. Nikhil K, Yavagal PC (2015) Antibacterial efficacy of Plectranthus amboinicus extracts against Streptococcus mutans—an in-vitro study. Int J Ayurveda Pharma Res 3:55–58

    Google Scholar 

  85. Karthikumar S, Vigneswari K, Jegatheesan K (2007) Screening of antibacterial and antioxidant activities of leaves of Eclipta prostrata (L). Sci Res Essay 2:101–104

    Google Scholar 

  86. Gupta D, Kumar M, Gupta V (2018) An in vitro investigation of antimicrobial efficacy of Euphorbia hirta and Murraya koenigii against selected pathogenic microorganisms. Asian J Pharm Clin Res 11:359–363

    Article  Google Scholar 

  87. Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. Biochem Biophys Acta 1147:132–136

    Article  CAS  PubMed  Google Scholar 

  88. Otake S, Makimura M, Kuroki T, Nishihara Y, Hirasawa M (1991) Anticaries effects of polyphenolic compounds from Japanese green tea. Caries Res 25:438–443

    Article  CAS  PubMed  Google Scholar 

  89. Akagawa M, Shigemitsu T, Suyama K (2003) Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Biosci Biotech Biochem 67:2632–2640

    Article  CAS  Google Scholar 

  90. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L (2008) Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomed Nanotechnol Biol Med 4:226–236

    Article  CAS  Google Scholar 

  91. Yadav NK, Arya RK, Dev K, Sharma C, Hossain Z, Meena S, Arya KR, Gayen JR, Datta D, Singh RK (2017) Alcoholic extract of Eclipta alba shows in vitro antioxidant and anticancer activity without exhibiting toxicological effects. Oxid Med Cell Longev 2017:1–18

    Article  Google Scholar 

  92. Thirugnanasampandan R, Ramya G, Gogulramnath M, Jayakumar R, Kanthimathi MS (2015) Evaluation of cytotoxic, DNA protecting and LPS induced MMP-9 down regulation activities of Plectranthus amboinicus (Lour) Spreng. essential oil. J Pharmacogn 7:32–36

    Article  CAS  Google Scholar 

  93. Bhatt P, Joseph GS, Negi PS, Varadaraj MC (2013) Chemical composition and nutraceutical potential of Indian Borage (Plectranthus amboinicus) stem extract. J Chem Article ID 320329:1–7

    Article  Google Scholar 

  94. Ramalakshmi P, Subramanian N, Saravanan R, Mohanakrishnan H, Muthu M (2014) Anticancer effect of Coleus amboinicus (Karpooravalli) on human lung cancer cell line (A549). Int J Dev Res 4:2442–2449

    Google Scholar 

  95. Patel JM, Tripathi P, Sharma V, Chauhan NS, Dixit VK (2011) Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: a review. J Ethnopharmacol 138:286–313

    Article  CAS  PubMed  Google Scholar 

  96. Anitha P, Geegi PG, Yogeswari J, Samy AA (2014) Anticancer activity of ethanolic extract of Euphorbia hirta (L). Sci Technol Arts Res J 3:8–13

    Article  Google Scholar 

  97. Nazeer AA, Udhayakumar S, Mani S, Dhanapal M, Vijaykumar SD (2018) Surface modification of Fe2O3and MgO nanoparticles with agrowastes for the treatment of chlorosis in Glycine max. Nano Converg 5:1–23

    Article  Google Scholar 

  98. Govindhan P, Pragathiswaran C (2016) Antibacterial activity and anticancer activity of Ag doped TiO2 @SiO2 nanocomposite. J Nanosci Technol 2:173–175

    Google Scholar 

  99. Krishna PG, Ananthaswamy PP, Mutta NB, Mariyappa KG, Singh R, Manchegowda SH, Dixit PS, Shivaprasad V (2017) Comparison of antimicrobial and anticancer activity of ZnO nanoparticles prepared using different precursors by hydrothermal synthesis. J Chem Pharm Sci 10:192–197

    CAS  Google Scholar 

  100. Jiang T, Song Y, Du D, Liu X, Lin Y (2016) Detection of p53 protein based on mesoporous Pt–Pd nanoparticles with enhanced peroxidase like catalysis. ACS Sens 1:717–724

    Article  CAS  Google Scholar 

  101. Liang L, Jin L, Ran Y, Sun LP, Guan BO (2018) Fiber light coupled optofluidic waveguide (FLOW) immnunosensor for highly sensitive detection of p53 protein. Anal Chem 90:10851–10857

    Article  CAS  PubMed  Google Scholar 

  102. Mubayi A, Chatterji S, Rai PM, Watal G (2012) Evidence based green synthesis of nanoparticles. Adv Mater Lett 3:519–525

    Article  Google Scholar 

  103. Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ, Lin NT, Yu MS, Hsu SF, Wang SL, Chang HH (2006) Visible light induced bactericidal activity of a nitrogen doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72:6111–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Subbaiya R, Lavanya RS, Selvapriya K, Selvam MM (2014) Green synthesis of silver nanoparticles from Phyllanthus amarus and their antibacterial and antioxidant properties. Int J Curr Microbiol Appl Sci 3:600–606

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research Institute of Electronics, Shizuoka University, Japan, for TEM Characterization. The authors also thank the Nanotechnology Research Center, SRM Institute of Science and Technology for XRD measurement. Authors express gratitude to Research Institute, Biotechnology Department, ISISM, SRM Institute of Science and Technology for UV-visible spectroscopy, FTIR, flow cytometry, and MTT assay facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Harish or S. Ponnusamy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheswari, P., Harish, S., Ponnusamy, S. et al. A novel strategy of nanosized herbal Plectranthus amboinicus, Phyllanthus niruri and Euphorbia hirta treated TiO2 nanoparticles for antibacterial and anticancer activities. Bioprocess Biosyst Eng 44, 1593–1616 (2021). https://doi.org/10.1007/s00449-020-02491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02491-6

Keywords