Skip to main content
Log in

Two-step enzymatic synthesis of α-linolenic acid-enriched diacylglycerols with high purities from silkworm pupae oil

  • Rapid Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, α-linolenic acid-enriched diacylglycerols (ALA-DAGs) were prepared via a two-step enzymatic way by combi-lipase using silkworm pupae oils as substrates. Firstly, several factors including temperature, mass ratio of water to oil, pH and enzyme loading were optimized for the hydrolysis of silkworm pupae oil. The maximum fatty acid content (96.51%) was obtained under the conditions: temperature 40 °C, water/oil 3:2 (w/w), pH 7, lipase TL100L loading 400 U/g, lipase PCL loading 30 U/g. Then, ALA was enriched by urea inclusion, with an increased ALA content of 82.50% being obtained. Secondly, the ALA-enriched silkworm pupae DAG oil (SPDO) was prepared by lipase PCL-catalyzed esterification reaction. After molecular distillation, the final SPDO product contained contents of DAGs (97.01%) and ALA (82.50%). This two-step enzymatic way for production of ALA–DAGs was successfully applied in a 100-fold scale-up reaction. Overall, our study provides a promising way for the preparation of ALA–DAGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Swinburn BA, Kraak VI, Allender S (2019) The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. Lancet 393:791–846. https://doi.org/10.1016/S0140-6736(18)32822-8

    Article  Google Scholar 

  2. Bushita H, Liu S, Ohta T, Ito Y, Saito K, Nukada Y, Ikeda N, Morita O (2018) Effects of dietary alpha-linolenic acid-enriched diacylglycerol oil on embryo/fetal development in rats. Regul Toxicol Pharmacol 98:108–114. https://doi.org/10.1016/j.yrtph.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  3. Saito S, Tomonobu K, Hase T, Tokimitsu I (2006) Effects of diacylglycerol on postprandial energy expenditure and respiratory quotient in healthy subjects. Nutrition 22:30–35. https://doi.org/10.1016/j.nut.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  4. Anikisetty M, Gopala Krishna AG, Panneerselvam V, Kamatham AN (2018) Diacylglycerol (DAG) rich rice bran and sunflower oils modulate lipid profile and cardiovascular risk factors in wistar rats. J Funct Foods 40:117–127. https://doi.org/10.1016/j.jff.2017.10.049

    Article  CAS  Google Scholar 

  5. Prabhavathi Devi BLA, Gangadhar KN, Prasad RBN, Sugasini D, Rao YPC, Lokesh BR (2018) Nutritionally enriched 1,3-diacylglycerol-rich oil: low calorie fat with hypolipidemic effects in rats. Food Chem 248:210–216. https://doi.org/10.1016/j.foodchem.2017.12.066

    Article  CAS  PubMed  Google Scholar 

  6. Lee WJ, Zhang Z, Lai OM, Tan CP, Wang Y (2020) Diacylglycerol in food industry: synthesis methods, functionalities, health benefits, potential risks and drawbacks. Trends Food Sci Technol 97:114–125. https://doi.org/10.1016/j.tifs.2019.12.032

    Article  CAS  Google Scholar 

  7. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, Martin A, Andres-Lacueva C, Senin U, Guralnik JM (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91:439–446. https://doi.org/10.1210/jc.2005-1303

    Article  CAS  PubMed  Google Scholar 

  8. Hunter JE, Zhang J, Kris-Etherton PM (2010) Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am J Clin Nutr 91:46–63. https://doi.org/10.3945/ajcn.2009.27661

    Article  CAS  PubMed  Google Scholar 

  9. Ando Y, Saito S, Yamanaka N, Suzuki C, Ono T, Osaki N, Katsuragi Y (2017) Alpha linolenic acid-enriched diacylglycerol consumption enhances dietary fat oxidation in healthy subjects: a randomized double-blind controlled trial. J Oleo Sci 66:181–185. https://doi.org/10.5650/jos.ess16183

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Xu L, Zou Y, Pang D, Shi W, Mu L, Li E, Lan D, Wang Y, Liao S (2019) Comprehensive identification of principal lipid classes and tocochromanols in silkworm (Antheraea pernyi and Bombyx mori ) pupae oils. Eur J Lipid Sci Technol 122:1900280. https://doi.org/10.1002/ejlt.201900280

    Article  CAS  Google Scholar 

  11. Xu Y, Guo S, Wang W, Wang Y, Yang B (2013) Enzymatic hydrolysis of palm stearin to produce diacylglycerol with a highly thermostable lipase. Eur J Lipid Sci Technol 115:564–570. https://doi.org/10.1002/ejlt.201200373

    Article  CAS  Google Scholar 

  12. Liu M, Fu J, Teng Y, Zhang Z, Zhang N, Wang Y (2016) Fast production of diacylglycerol in a solvent free system via lipase catalyzed esterification using a bubble column reactor. J Am Oil Chem Soc 93:637–648. https://doi.org/10.1007/s11746-016-2804-y

    Article  CAS  Google Scholar 

  13. Li D, Qin X, Sun B, Wang W, Wang Y (2017) An innovative deacidification approach for producing partial glycerides-free rice bran oil. Food Bioprocess Technol 10:1154–1161. https://doi.org/10.1007/s11947-017-1896-1

    Article  CAS  Google Scholar 

  14. Li D, Qin X, Sun B, Wang W, Wang Y (2019) A feasible industrialized process for producing high purity diacylglycerols with no contaminants. Eur J Lipid Sci Technol 121:1900039. https://doi.org/10.1002/ejlt.201900039

    Article  CAS  Google Scholar 

  15. Zheng P, Xu Y, Wang W, Qin X, Ning Z, Wang Y, Yang B (2013) Production of diacylglycerol mixture of regioisomers with high purity by two-step enzymatic reactions combined with molecular distillation. J Am Oil Chem Soc 91:251–259. https://doi.org/10.1007/s11746-013-2365-2

    Article  CAS  Google Scholar 

  16. Tang W, Lan D, Zhao Z, Li S, Li X, Wang Y (2019) A thermostable monoacylglycerol lipase from marine Geobacillus sp. 12AMOR1: biochemical characterization and mutagenesis study. Int J Mol Sci 20:780. https://doi.org/10.3390/ijms20030780

    Article  CAS  PubMed Central  Google Scholar 

  17. Wei Z, Liao A, Zhang H, Liu J, Jiang S (2009) Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresour Technol 99:4214–4219. https://doi.org/10.1016/j.biortech.2009.04.010

    Article  CAS  Google Scholar 

  18. Zheng Z, Dai Z, Cao Y (2018) Isolation, purification of DPAn-3 from the seal oil ethyl ester. Eur J Lipid Sci Technol 120:1800225. https://doi.org/10.1002/ejlt.201800225

    Article  CAS  Google Scholar 

  19. Fang B, Zhang M, Shen Y (2017) Importance of the higher retention of tocopherols and sterols for the oxidative stability of soybean and rapeseed oils. J Food Sci Technol 54:1938–1944. https://doi.org/10.1007/s13197-017-2628-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li D, Qin X, Wang J, Yang B, Wang W, Hong W, Wang Y (2015) Hydrolysis of soybean oil to produce diacylglycerol by a lipase from Rhizopus oryzae. J Mol Catal B-Enzym 115:43–50. https://doi.org/10.1016/j.molcatb.2015.01.009

    Article  CAS  Google Scholar 

  21. Wang X, Qin X, Li D, Yang B, Wang Y (2017) One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresour Technol 235:18–24. https://doi.org/10.1016/j.biortech.2017.03.086

    Article  CAS  PubMed  Google Scholar 

  22. Huang J, Liu Y, Song Z, Jin Q, Liu Y, Wang X (2010) Kinetic study on the effect of ultrasound on lipase-catalyzed hydrolysis of soy oil: study of the interfacial area and the initial rates. Ultrason Sonochem 17:521–525. https://doi.org/10.1016/j.ultsonch.2009.10.021

    Article  CAS  PubMed  Google Scholar 

  23. Duan Z, Du W, Liu D (2010) Novozym 435-catalyzed 1,3-diacylglycerol preparation via esterification in t-butanol system. Process Biochem 45:1923–1927. https://doi.org/10.1016/j.procbio.2010.03.007

    Article  CAS  Google Scholar 

  24. Zheng Z, Dai Z, Shen Q (2018) Enrichment of polyunsaturated fatty acids from seal oil through urea adduction and the fatty acids change rules during the process. J Food Process Preserv 42:e13593. https://doi.org/10.1111/jfpp.13593

    Article  CAS  Google Scholar 

  25. Wang W, Li T, Qin X, Ning Z, Yang B, Wang Y (2012) Production of lipase SMG1 and its application in synthesizing diacylglyecrol. J Mol Catal B-Enzym 77:87–91. https://doi.org/10.1016/j.molcatb.2012.01.013

    Article  CAS  Google Scholar 

  26. Cai C, Gao Y, Liu Y, Zhong N, Liu N (2016) Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem 212:205–212. https://doi.org/10.1016/j.foodchem.2016.05.167

    Article  CAS  PubMed  Google Scholar 

  27. Zhu Q, Li T, Wang Y, Yang B, Ma Y (2011) A two-stage enzymatic process for synthesis of extremely pure high oleic glycerol monooleate. Enzyme Microb Technol 48:143–147. https://doi.org/10.1016/j.enzmictec.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  28. Awadallak JA, da Silva EA, da Silva C (2020) Production of linseed diacylglycerol-rich oil by combined glycerolysis and esterification. Ind Crop Prod 145:111937. https://doi.org/10.1016/j.indcrop.2019.111937

    Article  CAS  Google Scholar 

  29. Matthaus B, Pudel F, Fehling P, Vosmann K, Freudenstein A (2011) Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur J Lipid Sci Technol 113:380–386. https://doi.org/10.1002/ejlt.201000300

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Fund for Distinguished Young Scholars of China (31725022), National Natural Science Foundation of China (31601398, 31871737), China Agriculture Research System (CARS-18-ZJ0503), Science and Technology Planning Project of Guangdong Province (2019A050503002), Innovation and Entrepreneurship Team of Nanhai Talent Plan of Nanhai District, Foshan (201811070001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifei Wang or Yonghua Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Shi, W., Xu, L. et al. Two-step enzymatic synthesis of α-linolenic acid-enriched diacylglycerols with high purities from silkworm pupae oil. Bioprocess Biosyst Eng 44, 627–634 (2021). https://doi.org/10.1007/s00449-020-02471-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02471-w

Keywords

Navigation