Skip to main content

Enhancement of schizophyllan production in Schizophyllum commune using microparticles in medium

Abstract

Schizophyllum commune is a wood-rotting filamentous fungus that secrets a homopolysaccharide called as schizophyllan. Schizophyllan has several applications such as enhanced oil recovery, pharmaceutical materials and an anti-cancer drug carrier. Biomass growth and schizophyllan production increase the viscosity of the cultivation medium, thus resulting in mass transfer limitation for the substrate. In this study, adding talc and aluminium oxide microparticles into the cultivation medium was studied to improve the fungal growth and morphology. The response surface methodology and one factor at a time were applied to find the effects of microparticles with different sizes and concentrations on the schizophyllan production. The optimum concentration and size of aluminium oxide microparticles were obtained as 20 g L−1 and < 30 µm, respectively. Aluminium oxide microparticles in shake flask culture caused to increase the schizophyllan production from 10 to 15 g L−1 and decrease the cultivation time from 10 to 7 days. The production yield also increased from 0.11 to 0.30 g of schizophyllan/g glucose. Bioreactor cultivation showed a twofold increase in schizophyllan production from 1.5 to 3 g L−1. The results of this study suggested a significant increase in the production of schizophyllan using a low-cost “microparticle-enhanced cultivation” without any further optimization of the culture medium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Gibbs P, Seviour R, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20:17–48

    CAS  Article  Google Scholar 

  2. Mousaviasl S, Saleh T, Shojaosadati SA, Boddohi S (2018) Synthesis and characterization of schizophyllan nanogels via inverse emulsion using biobased materials. Int J Biol Macromol 120:468–474

    CAS  Article  Google Scholar 

  3. Jamshidian H, Shojaosadati SA, Mousavi SM, Soudi MR, Vilaplana F (2017) Implications of recovery procedures on structural and rheological properties of schizophyllan produced from date syrup. Int J Biol Macromol 105:36–44

    CAS  Article  Google Scholar 

  4. Hamedi S, Shojaosadati SA, Najafi V, Alizadeh V (2020) A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan. Carbohyd Polym 229:115383

    CAS  Article  Google Scholar 

  5. Rau U, Gura E, Olszewski E, Wagner F (1992) Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol Biotechnol 9:19–25

    CAS  Google Scholar 

  6. Shu CH, Chou PF, Hsu I (2005) Effects of morphology and oxygen supply on schizophyllan formation by Schizophyllum commune using a pellet size controlling bioreactor. J Chem Technol Biotechnol 80:1383–1388

    CAS  Article  Google Scholar 

  7. Kumari M, Survase SA, Singhal RS (2008) Production of schizophyllan using Schizophyllum commune NRCM. Biores Technol 99:1036–1043

    CAS  Article  Google Scholar 

  8. Hao L-m, Xing X-h, Li Z, Zhang J-c, Sun J-x, Jia S-r, Qiao C-s, Wu T (2010) Optimization of effect factors for mycelial growth and exopolysaccharide production by Schizophyllum commune. Appl Biochem Biotechnol 160:621–631

    CAS  Article  Google Scholar 

  9. Sutivisedsak N, Leathers TD, Nunnally MS, Price NP, Biresaw G (2013) Utilization of agricultural biomass in the production of the biopolymer schizophyllan. J Ind Microbiol Biotechnol 40:105–112

    CAS  Article  Google Scholar 

  10. Jamshidian H, Shojaosadati SA, Vilaplana F, Mousavi SM, Soudi MR (2016) Characterization and optimization of schizophyllan production from date syrup. Int J Biol Macromol 92:484–493

    CAS  Article  Google Scholar 

  11. Antecka A, Bizukojc M, Ledakowicz S (2016) Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World J Microbiol Biotechnol 32:193

    Article  Google Scholar 

  12. Walisko R, Krull R, Schrader J, Wittmann C (2012) Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production. Biotech Lett 34:1975–1982

    CAS  Article  Google Scholar 

  13. Kaup BA, Ehrich K, Pescheck M, Schrader J (2008) Microparticle-enhanced cultivation of filamentous microorganisms: Increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 99:491–498

    CAS  Article  Google Scholar 

  14. Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109:462–471

    CAS  Article  Google Scholar 

  15. Driouch H, Sommer B, Wittmann C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105:1058–1068

    CAS  PubMed  Google Scholar 

  16. Coban HB, Demirci A, Turhan I (2015) Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation. Bioprocess Biosyst Eng 38:1075–1080

    CAS  Article  Google Scholar 

  17. Gonciarz J, Bizukojc M (2014) Adding talc microparticles to Aspergillus terreus ATCC 20542 preculture decreases fungal pellet size and improves lovastatin production. Eng Life Sci 14:190–200

    CAS  Article  Google Scholar 

  18. Kowalska A, Boruta T, Bizukojć M (2018) Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: comparative and quantitative insights into microparticle-enhanced cultivation (MPEC). Microbiologyopen 7:e00603

    Article  Google Scholar 

  19. Etschmann MMW, Huth I, Walisko R, Schuster J, Krull R, Holtmann D, Schrader J et al (2015) Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 32(1):145–157

    CAS  PubMed  Google Scholar 

  20. Yatmaz E, Karahalil E, Germec M, Ilgin M, Turhan İ (2016) Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production. Bioprocess Biosyst Eng 39:1391–1399

    CAS  Article  Google Scholar 

  21. Zhang Y, Kong H, Fang Y, Nishinari K, Phillips GO (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fibre 1:53–71

    CAS  Article  Google Scholar 

  22. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    CAS  Article  Google Scholar 

  23. Gonciarz J, Kowalska A, Bizukojc M (2016) Application of microparticle-enhanced cultivation to increase the access of oxygen to Aspergillus terreus ATCC 20542 mycelium and intensify lovastatin biosynthesis in batch and continuous fed-batch stirred tank bioreactors. Biochem Eng J 109:178–188

    CAS  Article  Google Scholar 

  24. Coban HB, Demirci A (2016) Enhancement and modeling of micro particle-added Rhizopus oryzae lactic acid production. Bioprocess Biosyst Eng 39(2):323–330

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to thank Dr. Alireza Chackoshian Khorasani and Mahdi Soleimani SalehAbadi for their technical supports and assistance during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Shojaosadati.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, V., Shojaosadati, S.A. & Zamir, S.M. Enhancement of schizophyllan production in Schizophyllum commune using microparticles in medium. Bioprocess Biosyst Eng 44, 317–328 (2021). https://doi.org/10.1007/s00449-020-02444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02444-z

Keywords

  • Schizophyllan
  • Schizophyllum commune
  • Microparticles
  • Aluminium oxide
  • Talc
  • Optimization