Skip to main content

Advertisement

Log in

Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Changing lifestyle is increasing the energy demand. Fossil fuel is unable to deliver such huge energy. Clean energy from renewable source can solve this problem. Hydrogen is a clean and energy-efficient fuel and used for electricity generation by fuel cells or can be used in combustion engine. Easy availability of starch wastes from different industrial food processing wastes makes it a potential source for hydrogen (H2) generation. Among various processes such as steam reforming, electrolysis, biophotolysis of water and anaerobic fermentation, anaerobic fermentation technique is environmentally friendly and requires less external energy, making it a preferred process for H2 generation. Dark fermentation process can use wide range of substrates including agricultural and industrial starchy waste with low level of undesirable compounds. Application of both anaerobic dark and photofermentation can improve H2 yield and production rate. H2 production from wastes containing starch serves dual benefit of waste reduction and energy generation. As starch is a polymer and all hydrogen-producing bacteria cannot produce amylase to hydrolyze it, a pretreatment step is required to convert starch into glucose and maltose. In this present review paper, we have summarized: (i) potential of various types of starch-containing wastes as feedstock, (ii) various fermentation techniques, (iii) optimization of external process parameter, (iv) application of bioreactor and simulation in fermentation technique and (v) advancement in H2 production from starchy wastes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BChl:

Bacteriochlorophylls

Ca:

Calcium

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CCD:

Central composite design

CFD:

Computational fluid dynamics

CH4 :

Methane

COD:

Chemical oxygen demand

DFE:

Dark fermentative effluent

EMP:

Embden–Meyerhof–Parma

Fd:

Ferredoxin

Fe:

Iron

H2 :

Hydrogen

H2O:

Water

LCE:

Light conversion efficiency

Mo:

Molybdenum

NH3 :

Ammonia

Ni:

Nickel

NOx :

Oxide form of nitrogen

PBR:

Photobioreactor

PHB:

Polyhydroxybutyrate

PNSB:

Purple non-sulfur bacteria

RSM:

Response surface methodology

S:

Sulfur

SOx :

Oxide form of sulfur

TVFA:

Total volatile fatty acid

TS:

Total solid

V:

Vanadium

VS:

Volatile solid

References

  1. Reddy CV, Reddy KR, Harish V, Shim J, Shankar M, Shetti NP, Aminabhavi TM (2020) Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy 45(13):7656–7679. https://doi.org/10.1016/j.ijhydene.2019.02.144

    Article  CAS  Google Scholar 

  2. Reddy KR, Reddy CV, Nadagouda MN, Shetti NP, Jaesool S, Aminabhavi TM (2019) Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J Environ Manage 238:25–40. https://doi.org/10.1016/j.jenvman.2019.02.075

    Article  CAS  PubMed  Google Scholar 

  3. Mehta A, Mishra A, Basu S, Shetti NP, Reddy KR, Saleh TA, Aminabhavi TM (2019) Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production–a review. J Environ Manage 250:109486. https://doi.org/10.1016/j.jenvman.2019.109486

    Article  CAS  PubMed  Google Scholar 

  4. Guwy A, Dinsdale R, Kim J, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Biores Technol 102(18):8534–8542. https://doi.org/10.1016/j.biortech.2011.04.051

    Article  CAS  Google Scholar 

  5. Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23(1):31–42. https://doi.org/10.1007/s11274-006-9190-9

    Article  CAS  Google Scholar 

  6. Reddy NL, Rao VN, Vijayakumar M, Santhosh R, Anandan S, Karthik M, Shankar M, Reddy KR, Shetti NP, Nadagouda M (2019) A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. Int J Hydrogen Energy 44(21):10453–10472. https://doi.org/10.1016/j.ijhydene.2019.02.120

    Article  CAS  Google Scholar 

  7. Mishra P, Krishnan S, Rana S, Singh L, Sakinah M, Ab Wahid Z (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Rev 24:27–37. https://doi.org/10.1016/j.esr.2019.01.001

    Article  Google Scholar 

  8. Karthik K, Reddy CV, Reddy KR, Ravishankar R, Sanjeev G, Kulkarni RV, Shetti NP, Raghu A (2019) Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci Mater Electron 30(23):20646–20653. https://doi.org/10.1007/s10854-019-02430-6

    Article  CAS  Google Scholar 

  9. Rao VN, Reddy NL, Kumari MM, Cheralathan K, Ravi P, Sathish M, Neppolian B, Reddy KR, Shetti NP, Prathap P (2019) Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: a review. J Environ Manage 248:109246. https://doi.org/10.1016/j.jenvman.2019.07.017

    Article  CAS  PubMed  Google Scholar 

  10. Rao R, Sani RK, Kumar S (2018) Biohydrogen production from Lignocellulosic Feedstocks using extremophiles. Extremophilic microbial processing of lignocellulosic feedstocks to biofuels, value-added products, and usable power. Springer, Germany, pp 79–96. https://doi.org/10.1007/978-3-319-74459-9_5

    Book  Google Scholar 

  11. Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043

    Article  CAS  Google Scholar 

  12. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-00999-7

    Article  Google Scholar 

  13. Zhang T, Jiang D, Zhang H, Jing Y, Tahir N, Zhang Y, Zhang Q (2019) Comparative study on bio-hydrogen production from corn stover: photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.04.170

    Article  Google Scholar 

  14. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Sustainable energy from waste organic matters via efficient microbial processes. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137927

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hitit ZY, Lazaro CZ, Hallenbeck PC (2017) Increased hydrogen yield and COD removal from starch/glucose based medium by sequential dark and photo-fermentation using Clostridium butyricum and Rhodopseudomonas palustris. Int J Hydrogen Energy 42(30):18832–18843. https://doi.org/10.1016/j.ijhydene.2017.05.161

    Article  CAS  Google Scholar 

  16. Sharma P, Gaur VK, Kim S-H, Pandey A (2020) Microbial strategies for bio-transforming food waste into resources. Biores Technol 299:122580. https://doi.org/10.1016/j.biortech.2019.122580

    Article  CAS  Google Scholar 

  17. Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M (2015) Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89. Bull Mater Sci 38(6):1533–1538. https://doi.org/10.1007/s12034-015-0974-0

    Article  CAS  Google Scholar 

  18. Hsieh P-H, Lai Y-C, Chen K-Y, Hung C-H (2016) Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. Int J Hydrogen Energy 41(46):21685–21691. https://doi.org/10.1016/j.ijhydene.2016.06.197

    Article  CAS  Google Scholar 

  19. Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V (2016) Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. Int J Hydrogen Energy 41(25):10639–10645. https://doi.org/10.1016/j.ijhydene.2016.04.197

    Article  CAS  Google Scholar 

  20. Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T, Miyake J, Tomiyama M, Kohno H (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrogen Energy 31(11):1509–1513

    Article  CAS  Google Scholar 

  21. Sun Q, Xiao W, Xi D, Shi J, Yan X, Zhou Z (2010) Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int J Hydrogen Energy 35(9):4076–4084. https://doi.org/10.1016/j.ijhydene.2010.01.145

    Article  CAS  Google Scholar 

  22. Lin R, Cheng J, Ding L, Song W, Liu M, Zhou J, Cen K (2016) Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Biores Technol 207:213–219. https://doi.org/10.1016/j.biortech.2016.02.009

    Article  CAS  Google Scholar 

  23. Ramprakash B, Muthukumar K (2015) Comparative study on the performance of various pretreatment and hydrolysis methods for the production of biohydrogen using Enterobacter aerogenes RM 08 from rice mill wastewater. Int J Hydrogen Energy 40(30):9106–9112. https://doi.org/10.1016/j.ijhydene.2015.05.027

    Article  CAS  Google Scholar 

  24. Cheng J, Su H, Zhou J, Song W, Cen K (2011) Hydrogen production by mixed bacteria through dark and photo fermentation. Int J Hydrogen Energy 36(1):450–457. https://doi.org/10.1016/j.ijhydene.2010.10.007

    Article  CAS  Google Scholar 

  25. Su H, Cheng J, Zhou J, Song W, Cen K (2009) Improving hydrogen production from cassava starch by combination of dark and photo fermentation. Int J Hydrogen Energy 34(4):1780–1786. https://doi.org/10.1016/j.ijhydene.2008.12.045

    Article  CAS  Google Scholar 

  26. Laurinavichene T, Tsygankov A (2015) Hydrogen photoproduction by co-culture Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 40(41):14116–14123. https://doi.org/10.1016/j.ijhydene.2015.08.086

    Article  CAS  Google Scholar 

  27. Silva J, Mendes J, Correia J, Rocha M, Micoli L (2018) Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process. J Biotechnol 286:71–78. https://doi.org/10.1016/j.jbiotec.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C, Li T, Su G, He J (2020) Enhanced direct fermentation from food waste to butanol and hydrogen by an amylolytic Clostridium. Renew Energy. https://doi.org/10.1016/j.renene.2020.01.151

    Article  Google Scholar 

  29. Muharja M, Junianti F, Ranggina D, Nurtono T, Widjaja A (2018) An integrated green process: subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Biores Technol 249:268–275. https://doi.org/10.1016/j.biortech.2017.10.024

    Article  CAS  Google Scholar 

  30. Chang SW, Vo D-VN, Bach Q-V, Tran HN, Basu MJ, Mohanrasu K, Murugan RS, Swetha TA, Sivapraksh G, Selvaraj A Simultaneous biohydrogen (H2) and bioplastic (poly-b-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes. doi: https://doi.org/10.1016/j.ijhydene.2019.09.036

  31. Nguyen T-AD, Kim K-R, Kim MS, Sim SJ (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrogen Energy 35(24):13392–13398. https://doi.org/10.1016/j.ijhydene.2009.11.112

    Article  CAS  Google Scholar 

  32. Saratale GD, Kshirsagar SD, Saratale RG, Govindwar SP, Oh M-K (2015) Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol Bioprocess Eng 20(4):733–743. https://doi.org/10.1007/s12257-015-0172-3

    Article  CAS  Google Scholar 

  33. Gorgec FK, Karapinar I (2019) Biohydrogen production from hydrolyzed waste wheat by dark fermentation in a continuously operated packed bed reactor: the effect of hydraulic retention time. Int J Hydrogen Energy 44(1):136–143. https://doi.org/10.1016/j.ijhydene.2018.08.155

    Article  CAS  Google Scholar 

  34. Alcázar-Alay SC, Meireles MAA (2015) Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol 35(2):215–236. https://doi.org/10.1590/1678-457X.6749

    Article  Google Scholar 

  35. Tong C, Ru W, Wu L, Wu W, Bao J (2020) Fine structure and relationships with functional properties of pigmented sweet potato starches. Food Chem 311:126011. https://doi.org/10.1016/j.foodchem.2019.126011

    Article  CAS  PubMed  Google Scholar 

  36. Zi Y, Shen H, Dai S, Ma X, Ju W, Wang C, Guo J, Liu A, Cheng D, Li H (2019) Comparison of starch physicochemical properties of wheat cultivars differing in bread-and noodle-making quality. Food Hydrocolloids 93:78–86. https://doi.org/10.1016/j.foodhyd.2019.02.014

    Article  CAS  Google Scholar 

  37. Végh KR (2009) Starch bearing crops as food sources. Cultivated Plants Primarily Food Sources 1:219–231

    Google Scholar 

  38. Sindhu R, Gnansounou E, Rebello S, Binod P, Varjani S, Thakur IS, Nair RB, Pandey A (2019) Conversion of food and kitchen waste to value-added products. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.02.053

    Article  PubMed  Google Scholar 

  39. Mahata C, Ray S, Das D (2020) Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Convers Manage 219:113047. https://doi.org/10.1016/j.enconman.2020.113047

    Article  CAS  Google Scholar 

  40. Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. https://doi.org/10.1016/j.fuel.2014.05.074

    Article  CAS  Google Scholar 

  41. RedCorn R, Fatemi S, Engelberth AS (2018) Comparing end-use potential for industrial food-waste sources. Engineering 4(3):371–380. https://doi.org/10.1016/j.eng.2018.05.010

    Article  CAS  Google Scholar 

  42. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  43. Chen SD, Sheu DS, Chen WM, Lo YC, Huang TI, Lin CY, Chang JS (2007) Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonastaiwanensis On1. Biotechnol Prog 23(6):1312–1320. https://doi.org/10.1021/bp070187z

    Article  CAS  PubMed  Google Scholar 

  44. Kumar MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR (2019) Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 253:833–839. https://doi.org/10.1016/j.fuel.2019.05.066

    Article  CAS  Google Scholar 

  45. Møller MS, Svensson B (2016) Structural biology of starch-degrading enzymes and their regulation. Curr Opin Struct Biol 40:33–42. https://doi.org/10.1016/j.sbi.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  46. Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6(2):151–160. https://doi.org/10.1016/S1367-5931(02)00311-3

    Article  CAS  PubMed  Google Scholar 

  47. Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014) Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: evaluation and comparison of the effects. Int J Hydrogen Energy 39(23):11920–11929. https://doi.org/10.1016/j.ijhydene.2014.06.027

    Article  CAS  Google Scholar 

  48. Wu Y-R, Mao A, Sun C, Shanmugam S, Li J, Zhong M, Hu Z (2017) Catalytic hydrolysis of starch for biohydrogen production by using a newly identified amylase from a marine bacterium Catenovulum sp. X3. Int J Biol Macromol 104:716–723. https://doi.org/10.1016/j.ijbiomac.2017.06.084

    Article  CAS  PubMed  Google Scholar 

  49. Sampath P, Reddy KR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV (2020) Biohydrogen production from organic waste–a review. Chem Eng Technol. https://doi.org/10.1002/ceat.201900400

    Article  Google Scholar 

  50. Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int J Hydrogen Energy 40(38):12956–12963. https://doi.org/10.1016/j.ijhydene.2015.08.004

    Article  CAS  Google Scholar 

  51. Karadag D, Puhakka JA (2010) Enhancement of anaerobic hydrogen production by iron and nickel. Int J Hydrogen Energy 35(16):8554–8560. https://doi.org/10.1016/j.ijhydene.2010.04.174

    Article  CAS  Google Scholar 

  52. Elbeshbishy E, Dhar BR, Nakhla G, Lee H-S (2017) A critical review on inhibition of dark biohydrogen fermentation. Renew Sustain Energy Rev 79:656–668. https://doi.org/10.1016/j.rser.2017.05.075

    Article  CAS  Google Scholar 

  53. Basak N, Das D (2009) Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides OU 001 in an annular photobioreactor: a case study. Biomass Bioenerg 33(6–7):911–919. https://doi.org/10.1016/j.biombioe.2009.02.007

    Article  CAS  Google Scholar 

  54. Trchounian K, Sawers RG, Trchounian A (2017) Improving biohydrogen productivity by microbial dark-and photo-fermentations: novel data and future approaches. Renew Sustain Energy Rev 80:1201–1216. https://doi.org/10.1016/j.rser.2017.05.149

    Article  CAS  Google Scholar 

  55. Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrogen Energy 39(13):6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093

    Article  CAS  Google Scholar 

  56. Budiman PM, Wu TY (2018) Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Convers Manage 165:509–527. https://doi.org/10.1016/j.enconman.2018.01.058

    Article  CAS  Google Scholar 

  57. Bundhoo ZM (2017) Coupling dark fermentation with biochemical or bioelectrochemical systems for enhanced bio-energy production: a review. Int J Hydrogen Energy 42(43):26667–26686. https://doi.org/10.1016/j.ijhydene.2017.09.050

    Article  CAS  Google Scholar 

  58. Ding J, Liu B-F, Ren N-Q, Xing D-F, Guo W-Q, Xu J-F, Xie G-J (2009) Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. Int J Hydrogen Energy 34(9):3647–3652. https://doi.org/10.1016/j.ijhydene.2009.02.078

    Article  CAS  Google Scholar 

  59. Morsy FM (2017) Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710. J Photochem Photobiol B 169:1–6. https://doi.org/10.1016/j.jphotobiol.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  60. Abubackar HN, Keskin T, Yazgin O, Gunay B, Arslan K, Azbar N (2019) Biohydrogen production from autoclaved fruit and vegetable wastes by dry fermentation under thermophilic condition. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.12.068

    Article  Google Scholar 

  61. Castelló E, Ferraz-Junior ADN, Andreani C, del Pilar Anzola-Rojas M, Borzacconi L, Buitrón G, Carrillo-Reyes J, Gomes SD, Maintinguer SI, Moreno-Andrade I (2019) Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109602

    Article  Google Scholar 

  62. Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy 38(30):13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122

    Article  CAS  Google Scholar 

  63. Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrogen Energy 36(13):7443–7459. https://doi.org/10.1016/j.ijhydene.2011.03.116

    Article  CAS  Google Scholar 

  64. Ma H, Su H (2019) Effect of temperature on the fermentation of starch by two high efficient H2 producers. Renew Energy 138:964–970. https://doi.org/10.1016/j.renene.2019.01.126

    Article  CAS  Google Scholar 

  65. Gupta M, Velayutham P, Elbeshbishy E, Hafez H, Khafipour E, Derakhshani H, El Naggar MH, Levin DB, Nakhla G (2014) Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int J Hydrogen Energy 39(36):20958–20967. https://doi.org/10.1016/j.ijhydene.2014.10.079

    Article  CAS  Google Scholar 

  66. Lay C-H, Kuo S-Y, Sen B, Chen C-C, Chang J-S, Lin C-Y (2012) Fermentative biohydrogen production from starch-containing textile wastewater. Int J Hydrogen Energy 37(2):2050–2057. https://doi.org/10.1016/j.ijhydene.2011.08.003

    Article  CAS  Google Scholar 

  67. Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Biores Technol 101(20):7789–7796. https://doi.org/10.1016/j.biortech.2010.05.024

    Article  CAS  Google Scholar 

  68. Sutthipattanasomboon C, Wongthanate J (2017) Enhancement of biohydrogen production from starch processing wastewater and further inside its ecosystem disclosed by 16S rDNA sequencing and FISH. Brazilian Arch Biol Technol. https://doi.org/10.1590/1678-4324-2017160260

    Article  Google Scholar 

  69. Engliman NS, Abdul PM, Wu S-Y, Jahim JM (2017) Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. Int J Hydrogen Energy 42(45):27482–27493. https://doi.org/10.1016/j.ijhydene.2017.05.224

    Article  CAS  Google Scholar 

  70. Cakır A, Ozmihci S, Kargi F (2010) Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. Int J Hydrogen Energy 35(24):13214–13218. https://doi.org/10.1016/j.ijhydene.2010.09.029

    Article  CAS  Google Scholar 

  71. Khongkliang P, Kongjan P, Utarapichat B, Reungsang A, Sompong O (2017) Continuous hydrogen production from cassava starch processing wastewater by two-stage thermophilic dark fermentation and microbial electrolysis. Int J Hydrogen Energy 42(45):27584–27592. https://doi.org/10.1016/j.ijhydene.2017.06.145

    Article  CAS  Google Scholar 

  72. Cappelletti BM, Reginatto V, Amante ER, Antônio RV (2011) Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy 36(12):3367–3372. https://doi.org/10.1016/j.renene.2011.05.015

    Article  CAS  Google Scholar 

  73. Qian C-X, Chen L-Y, Hui R, Yuan X-m (2011) Hydrogen production by mixed culture of several facultative bacteria and anaerobic bacteria. Progress Nat Sci Mater Int 21(6):506–511. https://doi.org/10.1016/S1002-0071(12)60090-2

    Article  Google Scholar 

  74. Park J-H, Kim D-H, Kim S-H, Yoon J-J, Park H-D (2018) Effect of substrate concentration on the competition between Clostridium and Lactobacillus during biohydrogen production. Int J Hydrogen Energy 43(25):11460–11469. https://doi.org/10.1016/j.ijhydene.2017.08.150

    Article  CAS  Google Scholar 

  75. Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98(4):251–256. https://doi.org/10.1016/S1389-1723(04)00277-4

    Article  CAS  PubMed  Google Scholar 

  76. Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM (2019) Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review. Carbon 149:693–721. https://doi.org/10.1016/j.carbon.2019.04.104

    Article  CAS  Google Scholar 

  77. Machado R, Moreira F, Batista F, Ferreira J, Cardoso V (2018) Repeated batch cycles as an alternative for hydrogen production by co-culture photofermentation. Energy 153:861–869. https://doi.org/10.1016/j.energy.2018.04.101

    Article  CAS  Google Scholar 

  78. Basak N, Jana AK, Das D (2014) Optimization of molecular hydrogen production by Rhodobacter sphaeroides OU 001 in the annular photobioreactor using response surface methodology. Int J Hydrogen Energy 39(23):11889–11901. https://doi.org/10.1016/j.ijhydene.2014.05.108

    Article  CAS  Google Scholar 

  79. Feng J, Li Q, Zhang Y, Yang H, Guo L (2019) High NH3N tolerance of a cheR2-deletion Rhodobacter capsulatus mutant for photo-fermentative hydrogen production using cornstalk. Int J Hydrogen Energy 44(30):15833–15841. https://doi.org/10.1016/j.ijhydene.2018.09.015

    Article  CAS  Google Scholar 

  80. Asada Y, Miyake J (1999) Photobiological hydrogen production. J Biosci Bioeng 88(1):1–6. https://doi.org/10.1016/S1389-1723(99)80166-2

    Article  CAS  PubMed  Google Scholar 

  81. Kapdan IK, Kargi F, Oztekin R, Argun H (2009) Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy 34(5):2201–2207. https://doi.org/10.1016/j.ijhydene.2009.01.017

    Article  CAS  Google Scholar 

  82. Turon V, Anxionnaz-Minvielle Z, Willison JC (2018) Replacing incandescent lamps with an LED panel for hydrogen production by photofermentation: visible and NIR wavelength requirements. Int J Hydrogen Energy 43(16):7784–7794. https://doi.org/10.1016/j.ijhydene.2018.03.019

    Article  CAS  Google Scholar 

  83. Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrogen Energy 39(7):3127–3141. https://doi.org/10.1016/j.ijhydene.2013.12.084

    Article  CAS  Google Scholar 

  84. Rao R, Basak N (2020) Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: the present state of the art. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1964

    Article  PubMed  Google Scholar 

  85. Tian H, Li J, Yan M, Tong YW, Wang C-H, Wang X (2019) Organic waste to biohydrogen: a critical review from technological development and environmental impact analysis perspective. Appl Energy 256:113961. https://doi.org/10.1016/j.apenergy.2019.113961

    Article  CAS  Google Scholar 

  86. Luongo V, Ghimire A, Frunzo L, Fabbricino M, d’Antonio G, Pirozzi F, Esposito G (2017) Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Biores Technol 228:171–175. https://doi.org/10.1016/j.biortech.2016.12.079

    Article  CAS  Google Scholar 

  87. Sargsyan H, Gabrielyan L, Hakobyan L, Trchounian A (2015) Light–dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture. Int J Hydrogen Energy 40(11):4084–4091. https://doi.org/10.1016/j.ijhydene.2015.01.163

    Article  CAS  Google Scholar 

  88. Zhang Q, Zhang Z, Wang Y, Lee D-J, Li G, Zhou X, Jiang D, Xu B, Lu C, Li Y (2018) Sequential dark and photo fermentation hydrogen production from hydrolyzed corn stover: a pilot test using 11 m3 reactor. Biores Technol 253:382–386. https://doi.org/10.1016/j.biortech.2018.01.017

    Article  CAS  Google Scholar 

  89. Lo Y-C, Chen S-D, Chen C-Y, Huang T-I, Lin C-Y, Chang J-S (2008) Combining enzymatic hydrolysis and dark–photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrogen Energy 33(19):5224–5233. https://doi.org/10.1016/j.ijhydene.2008.05.014

    Article  CAS  Google Scholar 

  90. Adessi A, Venturi M, Candeliere F, Galli V, Granchi L, De Philippis R (2018) Bread wastes to energy: sequential lactic and photo-fermentation for hydrogen production. Int J Hydrogen Energy 43(20):9569–9576. https://doi.org/10.1016/j.ijhydene.2018.04.053

    Article  CAS  Google Scholar 

  91. Cai J, Zhao Y, Fan J, Li F, Feng C, Guan Y, Wang R, Tang N (2019) Photosynthetic bacteria improved hydrogen yield of combined dark-and photo-fermentation. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2019.06.298

    Article  PubMed  Google Scholar 

  92. Said KAM, Amin MAM (2015) Overview on the response surface methodology RSM in extraction processes. J Appl Sci Process Eng. https://doi.org/10.33736/jaspe.161.2015

    Article  Google Scholar 

  93. Basak N, Jana AK, Das D (2016) CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. Int J Hydrogen Energy 41(18):7301–7317. https://doi.org/10.1016/j.ijhydene.2016.02.126

    Article  CAS  Google Scholar 

  94. Wen H-Q, Du J, Xing D-F, Ding J, Ren N-Q, Liu B-F (2017) Enhanced photo-fermentative hydrogen production of Rhodopseudomonas sp. nov. strain A7 by biofilm reactor. Int J Hydrogen Energy 42(29):18288–18294. https://doi.org/10.1016/j.ijhydene.2017.04.150

    Article  CAS  Google Scholar 

  95. Palamae S, Choorit W, Dechatiwongse P, Zhang D, del Rio-Chanona EA, Chisti Y (2018) Production of renewable biohydrogen by Rhodobacter sphaeroides S10: a comparison of photobioreactors. J Cleaner Production 181:318–328. https://doi.org/10.1016/j.jclepro.2018.01.238

    Article  CAS  Google Scholar 

  96. Kayfeci M, Keçebaş A, Bayat M (2019) Hydrogen production. Solar hydrogen production. Elsevier, Amsterdam, pp 45–83. https://doi.org/10.1016/B978-0-12-814853-2.00003-5

    Book  Google Scholar 

  97. Sharma M, Kaushik A (2017) Biohydrogen economy: challenges and prospects for commercialization. Biohydrogen production: sustainability of current technology and future perspective. Springer, Germany, pp 253–267. https://doi.org/10.1007/978-81-322-3577-4_12

    Book  Google Scholar 

  98. Wang S, Ma Z, Zhang T, Bao M, Su H (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11(1):100–106. https://doi.org/10.1007/s11705-017-1617-3

    Article  CAS  Google Scholar 

  99. Zagrodnik R, Łaniecki M (2017) Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark-and photofermentation in repeated fed-batch reactor. Biores Technol 224:298–306. https://doi.org/10.1016/j.biortech.2016.10.060

    Article  CAS  Google Scholar 

  100. Palazzi E, Fabiano B, Perego P (2000) Process development of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng 22(3):205–213. https://doi.org/10.1007/PL00009112

    Article  CAS  Google Scholar 

  101. Wang S, Zhang T, Su H (2016) Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renew Energy 96:1135–1141. https://doi.org/10.1016/j.renene.2015.11.072

    Article  CAS  Google Scholar 

  102. Han W, Liu D-N, Li Y-F, Zhao H-T, Ren N-Q (2015) Utilization of wheat for biohydrogen production by a combination of solid-state fermentation and batch fermentation. Int J Hydrogen Energy 40(17):5849–5855. https://doi.org/10.1016/j.ijhydene.2015.03.036

    Article  CAS  Google Scholar 

  103. Panagiotopoulos I, Bakker R, de Vrije T, Claassen P, Koukios E (2013) Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw. Biores Technol 128:345–350. https://doi.org/10.1016/j.biortech.2012.09.083

    Article  CAS  Google Scholar 

  104. Ozmihci S (2017) Performance of batch solid state fermentation for hydrogen production using ground wheat residue. Int J Hydrogen Energy 42(37):23494–23499. https://doi.org/10.1016/j.ijhydene.2017.03.225

    Article  CAS  Google Scholar 

  105. Fabiano B, Perego P (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy 27(2):149–156. https://doi.org/10.1016/S0360-3199(01)00102-1

    Article  CAS  Google Scholar 

  106. Ozmihci S, Kargi F (2011) Dark fermentative bio-hydrogen production from waste wheat starch using co-culture with periodic feeding: effects of substrate loading rate. Int J Hydrogen Energy 36(12):7089–7093. https://doi.org/10.1016/j.ijhydene.2011.03.071

    Article  CAS  Google Scholar 

  107. Han W, Wang X, Ye L, Huang J, Tang J, Li Y, Ren N (2015) Fermentative hydrogen production using wheat flour hydrolysate by mixed culture. Int J Hydrogen Energy 40(13):4474–4480. https://doi.org/10.1016/j.ijhydene.2015.02.016

    Article  CAS  Google Scholar 

  108. Gokfiliz P, Karapinar I (2017) The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int J Hydrogen Energy 42(4):2553–2561. https://doi.org/10.1016/j.ijhydene.2016.03.041

    Article  CAS  Google Scholar 

  109. Kirli B, Karapinar I (2018) The effect of HRT on biohydrogen production from acid hydrolyzed waste wheat in a continuously operated packed bed reactor. Int J Hydrogen Energy 43(23):10678–10685. https://doi.org/10.1016/j.ijhydene.2018.01.175

    Article  CAS  Google Scholar 

  110. Orozco R, Redwood M, Leeke G, Bahari A, Santos R, Macaskie L (2012) Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation. Int J Hydrogen Energy 37(8):6545–6553. https://doi.org/10.1016/j.ijhydene.2012.01.047

    Article  CAS  Google Scholar 

  111. Ulhiza TA, Puad NIM, Azmi AS (2018) Optimization of culture conditions for biohydrogen production from sago wastewater by Enterobacter aerogenes using Response Surface Methodology. Int J Hydrogen Energy 43(49):22148–22158. https://doi.org/10.1016/j.ijhydene.2018.10.057

    Article  CAS  Google Scholar 

  112. Maintinguer SI, Lazaro CZ, Pachiega R, Varesche MBA, Sequinel R, de Oliveira JE (2017) Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater. Int J Hydrogen Energy 42(1):152–160. https://doi.org/10.1016/j.ijhydene.2016.11.104

    Article  CAS  Google Scholar 

  113. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg 22(5):389–395. https://doi.org/10.1016/S0961-9534(02)00014-4

    Article  CAS  Google Scholar 

  114. Zagrodnik R, Łaniecki M (2017) The effect of pH on cooperation between dark-and photo-fermentative bacteria in a co-culture process for hydrogen production from starch. Int J Hydrogen Energy 42(5):2878–2888. https://doi.org/10.1016/j.ijhydene.2016.12.150

    Article  CAS  Google Scholar 

  115. Argun H, Kargi F, Kapdan IK (2009) Hydrogen production by combined dark and light fermentation of ground wheat solution. Int J Hydrogen Energy 34(10):4305–4311. https://doi.org/10.1016/j.ijhydene.2009.03.033

    Article  CAS  Google Scholar 

  116. Argun H, Kargi F, Kapdan IK (2008) Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int J Hydrogen Energy 33(24):7405–7412. https://doi.org/10.1016/j.ijhydene.2008.09.059

    Article  CAS  Google Scholar 

  117. Sagnak R, Kargi F (2011) Photo-fermentative hydrogen gas production from dark fermentation effluent of acid hydrolyzed wheat starch with periodic feeding. Int J Hydrogen Energy 36(7):4348–4353. https://doi.org/10.1016/j.ijhydene.2011.01.033

    Article  CAS  Google Scholar 

  118. Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506. https://doi.org/10.1016/j.jiec.2014.03.011

    Article  CAS  Google Scholar 

  119. Laurinavichene T, Tsygankov A (2016) Different types of H2 photoproduction by starch-utilizing co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 41(31):13419–13425. https://doi.org/10.1016/j.ijhydene.2016.06.117

    Article  CAS  Google Scholar 

  120. Argun H, Kargi F (2010) Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int J Hydrogen Energy 35(4):1604–1612. https://doi.org/10.1016/j.ijhydene.2009.12.033

    Article  CAS  Google Scholar 

  121. Argun H, Kargi F (2010) Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int J Hydrogen Energy 35(12):6170–6178. https://doi.org/10.1016/j.ijhydene.2010.03.132

    Article  CAS  Google Scholar 

  122. Argun H, Kargi F, Kapdan IK (2009) Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photo-fermentation. Int J Hydrogen Energy 34(15):6181–6188. https://doi.org/10.1016/j.ijhydene.2009.05.130

    Article  CAS  Google Scholar 

  123. Ozmihci S, Kargi F (2010) Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production. Int J Hydrogen Energy 35(3):1106–1111. https://doi.org/10.1016/j.ijhydene.2009.11.048

    Article  CAS  Google Scholar 

  124. Yunus N, Jahim JM, Anuar N, Abdullah SRS, Kofli NT (2014) Batch fermentative hydrogen production utilising sago (Metroxylon sp.) starch processing effluent by enriched sago sludge consortia. Int J Hydrogen Energy 39(35):19937–19946. https://doi.org/10.1016/j.ijhydene.2014.10.015

    Article  CAS  Google Scholar 

  125. Saraphirom P, Reungsang A (2010) Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrogen Energy 35(24):13435–13444. https://doi.org/10.1016/j.ijhydene.2009.11.122

    Article  CAS  Google Scholar 

  126. Vi LVT, Salakkam A, Reungsang A (2017) Optimization of key factors affecting bio-hydrogen production from sweet potato starch. Energy Procedia 138:973–978. https://doi.org/10.1016/j.egypro.2017.10.092

    Article  CAS  Google Scholar 

  127. Cheng C-H, Hung C-H, Lee K-S, Liau P-Y, Liang C-M, Yang L-H, Lin P-J, Lin C-Y (2008) Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. Int J Hydrogen Energy 33(19):5242–5249. https://doi.org/10.1016/j.ijhydene.2008.05.017

    Article  CAS  Google Scholar 

  128. Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P (2012) Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol Biofuels 5(1):35. https://doi.org/10.1186/1754-6834-5-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Arooj MF, Han S-K, Kim S-H, Kim D-H, Shin H-S (2008) Continuous biohydrogen production in a CSTR using starch as a substrate. Int J Hydrogen Energy 33(13):3289–3294. https://doi.org/10.1016/j.ijhydene.2008.04.022

    Article  CAS  Google Scholar 

  130. Lin C-Y, Chang C-C, Hung C-H (2008) Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy 33(10):2445–2453. https://doi.org/10.1016/j.ijhydene.2008.02.069

    Article  CAS  Google Scholar 

  131. Ntaikou I, Gavala HN, Kornaros M, Lyberatos G (2008) Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy 33(4):1153–1163. https://doi.org/10.1016/j.ijhydene.2007.10.053

    Article  CAS  Google Scholar 

  132. Elkahlout K, Sagir E, Alipour S, Koku H, Gunduz U, Eroglu I, Yucel M (2019) Long-term stable hydrogen production from acetate using immobilized Rhodobacter capsulatus in a panel photobioreactor. Int J Hydrogen Energy 44(34):18801–18810. https://doi.org/10.1016/j.ijhydene.2018.10.133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Biotechnology of Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, for providing workspace and support. Also authors are very much grateful to the reviewers for their valuable comments on the manuscript.

Funding

The first author is very much thankful to Ministry of Human Resource Development (MHRD), Government of India for providing funding as senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitai Basak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.R., Basak, N. Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 44, 1–25 (2021). https://doi.org/10.1007/s00449-020-02422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02422-5

Keywords

Profiles

  1. Nitai Basak