Skip to main content
Log in

Heterologous expression and biochemical characterization of a thermostable endo-β-1,4-glucanase from Colletotrichum orchidophilum

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To develop new cellulases for efficient utilization of the lignocellulose, an endoglucanase (CoCel5A) gene from Colletotrichum orchidophilum was synthesized and a recombinant Pichia pastoris GS115/pPIC9K/cocel5A was constructed for secretory expression of CoCel5A. After purification, the protein CoCel5A was biochemically characterized. The endoglucanase CoCel5A exhibited the optimal activity at 55–75 °C and high thermostability (about 85% residual activity) at the temperature of 55 °C after incubation for 3 h. The highest activity of CoCel5A was detected when 100 mM citric acid buffer (pH 4.0–5.0) was used and excellent pH stability (up to 95% residual activity) was observed after incubation in 100 mM citric acid buffer (pH 3.0–6.0) at 4 °C for 24 h. Carboxymethyl cellulose sodium salt (n = approx. 500) (CMC) and β-d-glucan were the best substrates for CoCel5A among the tested substrates. The kinetic parameters Vmax, Km, and Kcat/Km values against CMC were 290.70 U/mg, 2.65 mg/mL, and 75.67 mL/mg/s, respectively; and 228.31 U/mg, 2.06 mg/mL, and 76.45 mL/mg/s against β-d-glucan, respectively, suggesting that CoCel5A has high affinity and catalytic efficiency. These properties supported the potential application of CoCel5A in biotechnological and environmental fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK (2019) Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere 231:588–606

    CAS  PubMed  Google Scholar 

  2. Aditiya HB, Mahlia TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653

    CAS  Google Scholar 

  3. Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energ Chem 36:74–86

    Google Scholar 

  4. Kang KE, Jeong JS, Kim Y, Min J, Moon SK (2019) Development and economic analysis of bioethanol production facilities using lignocellulosic biomass. J Biosci Bioeng 128:475–479

    CAS  PubMed  Google Scholar 

  5. Hammond GP, Mansell RVM (2018) A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Appl Energ 224:136–146

    CAS  Google Scholar 

  6. Raja Sathendra E, Baskar G, Praveenkumar R, Gnansounou E (2019) Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresour Technol 271:345–352

    CAS  PubMed  Google Scholar 

  7. Sivarathnakumar S, Jayamuthunagai J, Baskar G, Praveenkumar R, Selvakumari IAE, Bharathiraja B (2019) Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresour Technol 293:122060

    CAS  PubMed  Google Scholar 

  8. Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15:106

    PubMed  PubMed Central  Google Scholar 

  9. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203

    CAS  Google Scholar 

  10. Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke PW (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sust Energ Rev 82:2379–2386

    CAS  Google Scholar 

  11. Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Liu C, Qu M, Zhang W, Pan K, OuYang K, Song X, Zhao X (2019) Characteristics of a recombinant Lentinula edodes endoglucanase and its potential for application in silage of rape straw. Int J Biol Macromol 139:49–56

    CAS  PubMed  Google Scholar 

  13. Bernardi AV, de Gouvea PF, Gerolamo LE, Yonamine DK, de Lourdes de Lima Balico L, Uyemura SA, Dinamarco TM (2018) Functional characterization of GH7 endo-1,4-beta-glucanase from Aspergillus fumigatus and its potential industrial application. Protein Expres Purif 150:1–11

    CAS  Google Scholar 

  14. Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Bioresour Technol 279:385–392

    CAS  PubMed  Google Scholar 

  15. Liu G, Li Q, Shang N, Huang JW, Ko TP, Liu W, Zheng Y, Han X, Chen Y, Chen CC, Jin J, Guo RT (2016) Functional and structural analyses of a 1,4-beta-endoglucanase from Ganoderma lucidum. Enzyme Microb Technol 86:67–74

    CAS  PubMed  Google Scholar 

  16. Karnaouri A, Muraleedharan MN, Dimarogona M, Topakas E, Rova U, Sandgren M, Christakopoulos P (2017) Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnol Biofuels 10:126

    PubMed  PubMed Central  Google Scholar 

  17. Onuma H, Hara K, Sugita K, Kano A, Fukuta Y, Shirasaka N (2019) Purification and characterization of a glycoside hydrolase family 5 endoglucanase from Tricholoma matsutake grown on barley based solid-state medium. J Biosci Bioeng 128:669–676

    PubMed  Google Scholar 

  18. Karnaouri AC, Topakas E, Christakopoulos P (2014) Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Appl Microbiol Biotechnol 98:231–242

    CAS  PubMed  Google Scholar 

  19. Hua C, Li W, Han W, Wang Q, Bi P, Han C, Zhu L (2018) Characterization of a novel thermostable GH7 endoglucanase from Chaetomium thermophilum capable of xylan hydrolysis. Int J Biol Macromol 117:342–349

    CAS  PubMed  Google Scholar 

  20. Zhou Q, Ji P, Zhang J, Li X, Han C (2017) Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin. J Biosci Bioeng 124:271–276

    CAS  PubMed  Google Scholar 

  21. Gao J, Huang JW, Li Q, Liu W, Ko TP, Zheng Y, Xiao X, Kuo CJ, Chen CC, Guo RT (2017) Characterization and crystal structure of a thermostable glycoside hydrolase family 45 1,4-beta-endoglucanase from Thielavia terrestris. Enzyme Microb Technol 99:32–37

    CAS  PubMed  Google Scholar 

  22. Byrne B (2015) Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 32:9–17

    CAS  PubMed  Google Scholar 

  23. Fischer JE, Glieder A (2019) Current advances in engineering tools for Pichia pastoris. Curr Opin Biotechnol 59:175–181

    CAS  PubMed  Google Scholar 

  24. Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31:581–593

    CAS  PubMed  Google Scholar 

  25. Pena DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D (2018) Metabolic engineering of Pichia pastoris. Metab Eng 50:2–15

    CAS  PubMed  Google Scholar 

  26. Baroncelli R, Sukno SA, Sarrocco S, Cafa G, Le Floch G, Thon MR (2018) Whole-genome sequence of the orchid anthracnose pathogen Colletotrichum orchidophilum. Mol Plant Microbe Interact 31:979–981

    CAS  PubMed  Google Scholar 

  27. Charron C, Hubert J, Minatchy J, Wilson V, Chrysot F, Gerville S, Ioos R, Jeandel C, Grisoni M (2018) Characterization of Colletotrichum orchidophilum, the agent of black spot disease of vanilla. J Phytopathol 166:525–531

    Google Scholar 

  28. Albersheim P, Jones TM, English PD (1969) Biochemistry of the cell wall in relation to infective processes. Annu Rev Phytopathol 7:171–194

    CAS  PubMed  Google Scholar 

  29. Nielsen H (2017) Predicting secretory proteins with SignalP. Methods Mol Biol 1611:59–73

    CAS  PubMed  Google Scholar 

  30. Gasteiger EHC, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa

    Google Scholar 

  31. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu S, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36:152–154

    CAS  PubMed  Google Scholar 

  33. Davis LC, Radke GA (1987) Measurement of protein using flow injection analysis with bicinchoninic acid. Anal Biochem 161:152–156

    CAS  PubMed  Google Scholar 

  34. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  35. Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res 41:D1096–D1103

    CAS  PubMed  Google Scholar 

  37. Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    CAS  PubMed  Google Scholar 

  38. Vlasenko E, Schulein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    CAS  PubMed  Google Scholar 

  39. Conde R, Cueva R, Pablo G, Polaina J, Larriba G (2004) A search for hyperglycosylation signals in yeast glycoproteins. J Biol Chem 279:43789–43798

    CAS  PubMed  Google Scholar 

  40. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32:1478–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pena CE, Costa MGS, Batista PR (2020) Glycosylation effects on the structure and dynamics of a full-length Cel7A cellulase. BBA-Proteins Proteom 1868:140248

    CAS  Google Scholar 

  42. Dhar H, Kasana RC, Dutt S, Gulati A (2015) Cloning and expression of low temperature active endoglucanase EG5C from Paenibacillus sp. IHB B 3084. Int J Biol Macromol 81:259–266

    CAS  PubMed  Google Scholar 

  43. Ueda M, Maruyama T, Kawasaki K, Nakazawa M, Sakaguchi M (2016) Purification, characterization, and gene cloning of a cold-adapted endo-1,4-beta-glucanase from Bellamya chinensis laeta. Mol Biotechnol 58:241–250

    CAS  PubMed  Google Scholar 

  44. Meegoda JN, Li B, Patel K, Wang LB (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15:2224

    CAS  PubMed Central  Google Scholar 

  45. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186

    CAS  PubMed  Google Scholar 

  46. Lee K-M, Jeya M, Joo A-R, Singh R, Kim I-W, Lee J-K (2010) Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme Microb Technol 46:206–211

    CAS  Google Scholar 

  47. Tao P, Zhang Y, Wu Z, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohydr Polym 214:1–7

    CAS  PubMed  Google Scholar 

  48. Li J, Xu X, Shi P, Liu B, Zhang Y, Zhang W (2017) Overexpression and characterization of a novel endo-beta-1,3(4)-glucanase from thermophilic fungus Humicola insolens Y1. Protein Expres Purif 138:63–68

    CAS  Google Scholar 

  49. Ramezani S, Asoodeh A (2016) Biochemical characterization and gene cloning of a novel alkaline endo-1,4-glucanase from Bacillus subtilis DR8806. J Mol Catal B-Enzym 132:75–83

    CAS  Google Scholar 

  50. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    CAS  PubMed  Google Scholar 

  51. Song YH, Lee KT, Baek JY, Kim MJ, Kwon MR, Kim YJ, Park MR, Ko H, Lee JS, Kim KS (2017) Isolation and characterization of a novel endo-beta-1,4-glucanase from a metagenomic library of the black-goat rumen. Braz J Microbiol 48:801–808

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    CAS  PubMed  Google Scholar 

  53. Tseng CW, Ko TP, Guo RT, Huang JW, Wang HC, Huang CH, Cheng YS, Wang AH, Liu JR (2011) Substrate binding of a GH5 endoglucanase from the ruminal fungus Piromyces rhizinflata. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1189–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yan J, Liu W, Li Y, Lai HL, Zheng Y, Huang JW, Chen CC, Chen Y, Jin J, Li H, Guo RT (2016) Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-beta-endoglucanase. Biochem Biophys Res Commun 475:8–12

    CAS  PubMed  Google Scholar 

  55. Roche DB, Brackenridge DA, McGuffin LJ (2015) Proteins and their interacting partners: an introduction to protein-ligand binding site prediction methods. Int J Mol Sci 16:29829–29842

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, P. R. China (2018R01014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Liu.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, HY., Zhou, JB., Yi, XN. et al. Heterologous expression and biochemical characterization of a thermostable endo-β-1,4-glucanase from Colletotrichum orchidophilum. Bioprocess Biosyst Eng 44, 67–79 (2021). https://doi.org/10.1007/s00449-020-02420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02420-7

Keywords

Navigation