Improvement of ethanol production by extractive fed-batch fermentation in a drop column bioreactor


The use of fed-batch extractive fermentation can overcome inhibitory effects caused by the substrate and ethanol to the yeast cells, since it allows regulate the substrate concentration and remove the product as it is produced. The present study describes the modelling and experimental validation of ethanol production in fed-batch extractive fermentation with in situ ethanol removal by oleic acid in a non-conventional drop column bioreactor (DCB) operated under industrial conditions. The model developed using the hybrid Andrews–Levenspiel equation and ethanol distribution coefficient parameter (KDE) provided an excellent description of the fed-batch extractive ethanol fermentation process with oleic acid. Furthermore, extractive fed-batch fermentation allowed the feed up to 306.6 kg m−3 of substrate (total reducing sugars), with total ethanol concentration in extractive fermentation in the ranging 100.3–139.8 kg m−3 (12.7–17.7 ºGL), 19.9–67.2% higher when compared with the conventional process without ethanol removal. Moreover, this process has the advantage of less effluent generated and energy consumption for ethanol recovery when compared to the conventional process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenerg 32:582–595.

    CAS  Article  Google Scholar 

  2. 2.

    Goldemberg Ã, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097.

    Article  Google Scholar 

  3. 3.

    Renewable Fuels Association (RFA) (2017) Industry Statistics:World Fuel Ethanol Production. Accessed 7 Jun 2018

  4. 4.

    Histórico de produção e moagem (2018) UNICA, Brazil. Accessed 12 Feb 2020

  5. 5.

    Godoy A, Amorim HV, Lopes ML (2008) Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. Int sugar J 110:175–181

    CAS  Google Scholar 

  6. 6.

    Basso LC, Basso TO, Rocha SN (2011) In: Marco Aurelio Dos Santos Bernardes (Ed) Ethanol production in Brazil: The Industrial process and its impact on yeast fermentation. Biofuel Prod Dev Prospects. 1530:85–100. Accessed 12 Feb 2020

  7. 7.

    Sonego JLS, Lemos DA, Pinto CEM et al (2016) Extractive fed-batch ethanol fermentation with CO2 stripping in a bubble column bioreactor: experiment and modeling. Energy Fuels 30:748–757.

    CAS  Article  Google Scholar 

  8. 8.

    Carvalho, JCM, Sato S (2001) In: Schmidell, W et al. (Coord) Fermentação Descontínua. Biotecnologia Industrial: Engenharia Bioquímica, v.2. Edgar Blücher, São Paulo

  9. 9.

    Kim SK, Nguyen CM, Ko EH et al (2017) Bioethanol production from Hydrodictyon reticulatum by fed-batch fermentation using Saccharomyces cerevisiae KCTC7017. J Microbiol Biotechnol 27:1112–1119.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Thatipamala R, Rohani S, Hill GA (1992) Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentat ion. Biotechnol Bioeng 40:289–297.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhang Q, Wu D, Lin Y et al (2015) Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels Fuels 29:1019–1027.

    CAS  Article  Google Scholar 

  12. 12.

    Chi Z, Arneborg N (2000) Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol. J Ind Microbiol Biotechnol 24:75–78.

    CAS  Article  Google Scholar 

  13. 13.

    Amorim HV, Lopes ML, de Castro Oliveira JV et al (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Maiorella B, Blanch HW, Wilke CR (1983) By-product inhibition effects on ethanolic fermentation bySaccharomyces cerevisiae. Biotechnol Bioeng 25:103–121.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Minier M, Goma G (1982) Ethanol production by extractive fermentation. Biotechnol Bioeng 24:1565–1579.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Kollerup F, Daugulis AJ (1985) Screening and identification of extractive fermentation solvents using a database. Can J Chem Eng 63:919–927.

    CAS  Article  Google Scholar 

  18. 18.

    Kollerup F, Daugulis AJ (1986) Ethanol production by extractive fermentation—solvent identification and prototype development. Can J Chem Eng 64:598–606.

    CAS  Article  Google Scholar 

  19. 19.

    Offeman RD, Franqui-Espiet D, Cline JL et al (2010) Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast. Sep Purif Technol 72:180–185.

    CAS  Article  Google Scholar 

  20. 20.

    Offeman RD, Stephenson SK, Franqui D et al (2008) Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Sep Purif Technol 63:444–451.

    CAS  Article  Google Scholar 

  21. 21.

    Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Barros MRA, Cabral JMS, Novais JM (1987) Production of ethanol by immobilizedSaccharomyces bayanus in an extractive fermentation system. Biotechnol Bioeng 29:1097–1104.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Jassal DS, Zhang Z, Hill GA (1994) In-situ extraction and purification of ethanol using commercial oleic acid. Can J Chem Eng 72:822–827.

    CAS  Article  Google Scholar 

  24. 24.

    Stang GD, Macdonald DG, Hill G (2001) Mass transfer and bioethanol production in an external-loop liquid-lift bioreactor. Ind Eng Chem Res 40:5074–5080.

    CAS  Article  Google Scholar 

  25. 25.

    Boudreau TM, Hill GA (2006) Improved ethanol–water separation using fatty acids. Process Biochem 41:980–983.

    CAS  Article  Google Scholar 

  26. 26.

    Lemos DA, Sonego JLS, Boschiero MV et al (2017) Selection and application of nontoxic solvents in extractive ethanol fermentation. Biochem Eng J 127:128–135.

    CAS  Article  Google Scholar 

  27. 27.

    Lemos DA, Sonego JLS, Cruz AJG, Badino AC (2018) In situ extractive ethanol fermentation in a drop column bioreactor. J Chem Technol Biotechnol 93:1381–1387.

    CAS  Article  Google Scholar 

  28. 28.

    Gutiérrez LF, Sánchez ÓJ, Cardona CA (2013) Analysis and design of extractive fermentation processes using a novel short-cut method. Ind Eng Chem Res 52:12915–12926.

    CAS  Article  Google Scholar 

  29. 29.

    Dafoe JT, Daugulis AJ (2014) In situ product removal in fermentation systems: improved process performance and rational extractant selection. Biotechnol Lett 36:443–460.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sonego JLS, Lemos DA, Rodriguez GY et al (2014) Extractive batch fermentation with CO2 stripping for ethanol production in a bubble column bioreactor: experimental and modeling. Energy Fuels 28:7552–7559.

    CAS  Article  Google Scholar 

  31. 31.

    Badino AC, Cerri MO, Hokka CO (2007) Sistema reacional pneumático e uso do mesmo. PI0701608‐5—INPI Search

  32. 32.

    Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723.

    CAS  Article  Google Scholar 

  33. 33.

    Levenspiel O (1980) The monod equation: a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687.

    CAS  Article  Google Scholar 

  34. 34.

    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  35. 35.

    Guidini CZ, Diniz L, Marquez S et al (2014) Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch Process. Appl Biochem Biotechnol 172:1623–1638.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Cleran Y, Thibault J, Cheruy A, Corrieu G (1991) Comparison of prediction performances between models obtained by the group method of data handling and neural networks for the alcoholic fermentation rate in enology. J Ferment Bioeng 71:356–362.

    CAS  Article  Google Scholar 

  37. 37.

    Veloso IIK, Rodrigues KCS, Sonego JLS et al (2019) Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: modeling and optimization. Biochem Eng J 141:60–70.

    CAS  Article  Google Scholar 

  38. 38.

    Ccopa Rivera E, Yamakawa CK, Saad MBW et al (2017) Effect of temperature on sugarcane ethanol fermentation: kinetic modeling and validation under very-high-gravity fermentation conditions. Biochem Eng J 119:42–51.

    CAS  Article  Google Scholar 

  39. 39.

    Sonego JLS, Lemos DA, Cruz AJG, Badino AC (2018) Optimization of fed-batch fermentation with in situ ethanol removal by CO2 stripping. Energy Fuels 32:354–960.

    CAS  Article  Google Scholar 

  40. 40.

    News F (2015) Economia de milhões de reais. Accessed 13 Mar 2020

Download references


We are grateful for the financial support provided by Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant Number 2018/11405-5), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Numbers 431460/2016-7, 310098/2017-3, 312903/2018-9 and 141300/2019-1).

Author information



Corresponding author

Correspondence to Alberto C. Badino.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lemos, D.A., Sonego, J.L.S., Cruz, A.J.G. et al. Improvement of ethanol production by extractive fed-batch fermentation in a drop column bioreactor. Bioprocess Biosyst Eng (2020).

Download citation


  • Bioethanol
  • Fed-batch extractive fermentation
  • Liquid–liquid extraction
  • Drop column bioreactor
  • High substrate concentration