Skip to main content
Log in

Lignolytic and hemicellulolytic enzyme cocktail production from Bacillus tequilensis LXM 55 and its application in pulp biobleaching

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bioprocessing of pulp requires lignolytic as well as hemicellulolytic enzymes. The present study is the first report of a cocktail of laccase (L), xylanase (X), and mannanase (M), from a single bacterium for pulp biobleaching. A novel strain Bacillus tequilensis LXM 55 produced thermo-alkali stable L + X + M. On optimization higher enzyme yield (IUml−1/fold increase) of laccase (396.35/24.16), xylanase (212.95/81.90) and mannanase (153.33/102.90) were achieved in the cocktail. Treatment of pulp with cocktail of enzymes led to 49.35% reduction in kappa number and considerable enhancement in the brightness (11.59%), whiteness (4.11%), and other pulp properties. Most importantly, no mediator system was required for the application of laccase. 40% less chlorine consumption was required to obtain the paper of the same quality as that of pulp treated without enzyme but with 100% chlorine. Therefore, this cocktail of enzymes is highly suitable for pulp biobleaching in the paper mill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Battan B, Sharma J, Dhiman SS, Kuhad RC (2007) Enhanced production of cellulose free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzyme Microb Technol 41:733–739. https://doi.org/10.1016/j.enzmictec.2007.06.006

    Article  CAS  Google Scholar 

  2. Chauhan PS, Soni SK, Sharma P, Saini A, Gupta N (2014) A Mannanase from Bacillus nealsonii PN-11: Statistical optimization of production and Application in Biobleaching of pulp in combination with xylanase. Int J Pharm Bio Sci 5:237–251

    CAS  Google Scholar 

  3. Singh G, Ahuja N, Batish M, Capalash N, Sharma P (2008) Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from Ɣ-proteobacterium JB: Optimization of process parameters using response surface methodology. Bioresour Technol 99:7472–7479. https://doi.org/10.1016/j.biortech.2008.02.023

    Article  CAS  PubMed  Google Scholar 

  4. Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Purification and Characterization of an extracellular thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS ONE 9:e96951. https://doi.org/10.1371/journal.pone.0096951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janveja C, Rana SS, Soni SK (2013) Kitchen waste residues as potential renewable biomass resources for the production of multiple fungal carbohydrases and second generation. J Technol Innov Renew Energy 2:186–200

    CAS  Google Scholar 

  6. Kiddinamoorthy J, Anceno AJ, Haki GD, Rakshit SK (2008) Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. World J Microbiol Biotechnol 24:605–612. https://doi.org/10.1007/s11274-007-9516-2

    Article  CAS  Google Scholar 

  7. Kamble RD, Jadhav AR (2012) Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. Int J Microbiol 2012:683193. https://doi.org/10.1155/2012/683193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar D, Angural S, Rana M, Kaur G, Puri N, Gupta N (2017) Cloning, characterization and its potential in pulp bio bleaching by alkali thermostable β-mannanase from Bacillus sp. 22. Eur J Pharm Med Res 4:584–592

    Google Scholar 

  9. Bajpai P, Anand A, Sharma N, Mishra SP, Bajpai PK, Lachenal D (2006) Enzymes improve ECF bleaching of pulp. Bioresources 1:34–44

    Article  Google Scholar 

  10. Singh G, Capalash N, Goel R, Sharma P (2007) A pH-stable laccase from alkali-tolerant γ-proteobacterium JB: purification, characterization and indigo carmine degradation. Enzyme Microb Technol 41:794–799. https://doi.org/10.1016/j.enzmictec.2007.07.001

    Article  CAS  Google Scholar 

  11. Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 38:947–956. https://doi.org/10.1007/s00449-014-1340-0

    Article  CAS  PubMed  Google Scholar 

  12. Woldesenbet F, Virk AP, Gupta N, Sharma P (2017) Biobleaching of mixed wood kraft pulp with alkalophilic bacterial xylanase, mannanase and laccase-mediator system. J Microbiol Biotechn Res 3:32–41

    Google Scholar 

  13. Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100:2032–2039. https://doi.org/10.1016/j.biortech.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  14. Kaur A, Mahajan R, Singh A, Garg G, Sharma J (2010) Application of cellulose-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101:9150–9155. https://doi.org/10.1016/j.biortech.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  15. Ravikumar G, Gomathi D, Kalaiselvi M, Uma C (2012) Production, purification and partial characterization of laccase from the mushroom Hypsizygus ulmarius. Int J Pharm Bio Sci 3:355–365

    CAS  Google Scholar 

  16. Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta R, Kuhad RC (2014) Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol 169:96–102. https://doi.org/10.1016/j.biortech.2014.06.066

    Article  CAS  PubMed  Google Scholar 

  17. Valls C, Vidal T, Roncero MB (2010) Boosting the effect of a laccase-mediator system by using a xylanase stage in pulp bleaching. J Hazard Mater 177:586–592. https://doi.org/10.1016/j.jhazmat.2009.12.073

    Article  CAS  PubMed  Google Scholar 

  18. Kumar D, Kumar A, Sondhi S, Sharma P, Gupta N (2018) An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech 8:182. https://doi.org/10.1007/s13205-018-1181-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kansoh AL, Nagieb ZA (2004) Xylanase and Mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek 85:103–114. https://doi.org/10.1023/B:ANTO.0000020281.73208.62

    Article  CAS  PubMed  Google Scholar 

  20. Angural S, Rana M, Sharma A, Warmoota R, Puri N, Gupta N (2020) Combinatorial biobleaching of mixedwood pulp with lignolytic and hemicellulolytic enzymes for paper making. Indian J Microbiol. https://doi.org/10.1007/s12088-020-00867-6

    Article  PubMed  Google Scholar 

  21. Woldesenbet F, Virk AP, Gupta N, Sharma P (2012) Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp. Appl Biochem Biotech 167:100–108. https://doi.org/10.1007/s12010-012-9663-2

    Article  CAS  Google Scholar 

  22. Khusro A, Kaliyan BK, Al-Dhabi NA, Arasu MV, Agastian P (2016) Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI. Electron J Biotechn 22:16–25. https://doi.org/10.1016/j.ejbt.2016.04.002

    Article  CAS  Google Scholar 

  23. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  24. Virk AP, Sharma P, Capalash N (2012) Use of laccase in pulp and paper Industry. Biotechnol Prog 28:21–32. https://doi.org/10.1002/btpr.727

    Article  CAS  PubMed  Google Scholar 

  25. Gubitz GM, Haltrich D, Latal B, Steiner W (1997) Mode of depolymerisation of hemicelluloses by various mannanases and xylanases in relation to their ability to bleach softwood pulp. Appl Microbiol Biotechnol 47:658–662. https://doi.org/10.1007/s002530050991

    Article  CAS  Google Scholar 

  26. Gupta V, Capalash N, Gupta N, Sharma P (2016) Bio-prospecting laccases in the bacterial diversity of a activated sludge from pulp and paper industry. Indian J Microbiol 1–8: https://doi.org/10.1007/s12088-016-0624-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dhakar K, Pandey A (2013) Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsuta (MTCC 11397). Enzyme Res 2013:869062. https://doi.org/10.1155/2013/869062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birhanli E, Yesilada O (2017) The effect of various inducers and their combinations with copper on laccase production of Trametes versicolor pellets in a repeated-batch process. Turk J Biol 41:587–599. https://doi.org/10.3906/biy-1608-44

    Article  CAS  Google Scholar 

  29. Singh G, Kaur K, Puri S (2015) Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Appl Microbiol Biotechnol 99:155–164. https://doi.org/10.1007/s00253-014-6219-0

    Article  CAS  PubMed  Google Scholar 

  30. Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:11. https://doi.org/10.1007/s13205-016-0584-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harnpicharnchai P, Pinngoen W, Teanngam W, Sornlake W, Sae-Tang K, Manitchotpisit P, Tanapongpipat S (2016) Production of high activity Aspergillus niger BCC4525 β-mannanase in Pichia pastoris and its application for mannooligosaccharides production from biomass hydrolysis. Biosci biotech bioch 80:2298–2305. https://doi.org/10.1080/09168451.2016.1230003

    Article  CAS  Google Scholar 

  32. Khanongnuch C, Asada K, Tsurga H, Ooi T, Kinoshita S, Lumyong S (1998) ß-Mannanase and Xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. J Ferment Bioeng 86:461–466. https://doi.org/10.1016/S0922-338X(98)80152-9

    Article  CAS  Google Scholar 

  33. Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp Biobleaching and Mediated oxidation of a nonphenolic substrate by Laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol 69:1953–1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fillat U, Roncero MB (2009) Biobleaching of high quality pulps with laccase-mediator system: Influence of treatment time and oxygen supply. Biochem Eng J 44:193–198. https://doi.org/10.1016/j.bej.2008.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided by University Grant Commission (UGC-MRP-43-476/2014/SR) and (UGC-SAP II-DRS-I) New Delhi, India is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angural, S., Kumar, A., Kumar, D. et al. Lignolytic and hemicellulolytic enzyme cocktail production from Bacillus tequilensis LXM 55 and its application in pulp biobleaching. Bioprocess Biosyst Eng 43, 2219–2229 (2020). https://doi.org/10.1007/s00449-020-02407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02407-4

Keywords

Navigation