Skip to main content
Log in

Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lipase stability in organic solvent is crucial for its application in many biotechnological processes as biocatalyst. One way to improve lipase’s activity and stability in unusual reaction medium is its immobilization on inert supports. Here, lipases from different sources and immobilized through weak chemical interactions on hydrophobic and ionic supports had their transesterification ability dramatically dependent on the support and also on the solvent that had been used. The ethanolysis of sardine oil was carried out at the presence of cyclohexane and tert-amyl alcohol, in which Duolite A568-Thermomyces lanuginosa lipase derivative achieved 49% of ethyl esters production after 24 h in cyclohexane. The selectivity of immobilized lipases was also studied and, after 3 h of synthesis, the reaction with Duolite A568-Thermomyces lanuginosa derivative in cyclohexane produced 24% ethyl ester of eicosapentaenoic acid and 1.2% ethyl ester of docosahexaenoic acid, displaying a selectivity index of 20 times the ethyl ester of eicosapentaenoic acid. Different derivatives of Candida antarctica lipases fraction B (CALB) and phospholipase Lecitase® Ultra (Lecitase) were also investigated. Along these lines, a combination between these factors may be applied to improve the activity and selectivity of immobilized lipases, decreasing the total cost of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hung T-C, Giridhar R, Chiou S-H, Wu W-T (2003) Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B Enzym 26:69–78. https://doi.org/10.1016/S1381-1177(03)00167-X

    Article  CAS  Google Scholar 

  2. Foresti ML, Ferreira ML (2007) Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme Microb Technol 40:769–777. https://doi.org/10.1016/j.enzmictec.2006.06.009

    Article  CAS  Google Scholar 

  3. Lokha Y, Arana-Peña S, Rios NS et al (2020) Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme Microb Technol 133:12–95. https://doi.org/10.1016/j.enzmictec.2019.109461

    Article  CAS  Google Scholar 

  4. Rios NS, Morais EG, dos Santos GW et al (2019) Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol 141:313–324. https://doi.org/10.1016/j.ijbiomac.2019.09.003

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Galan C, Dos Santos JCS, Barbosa O et al (2014) Tuning of Lecitase features via solid-phase chemical modification: Effect of the immobilization protocol. Process Biochem 49:604–616. https://doi.org/10.1016/j.procbio.2014.01.028

    Article  CAS  Google Scholar 

  6. Garcia-Galan C, Barbosa O, Hernandez K et al (2014) Evaluation of styrene-divinylbenzene beads as a support to immobilize lipases. Molecules 19:7629–7645. https://doi.org/10.3390/molecules19067629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ronda L, Bettati S, Bruno S (2015) Immobilization of proteins in ormosil gels: functional properties and applications. Curr Org Chem 19:1677–1683. https://doi.org/10.2174/1385272819666150429232239

    Article  CAS  Google Scholar 

  8. Manoel EA, dos Santos JCS, Freire DMG et al (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57. https://doi.org/10.1016/j.enzmictec.2015.02.001

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez-Lopez L, Rueda N, Bartolome-Cabrero R et al (2016) Improved immobilization and stabilization of lipase from Rhizomucor miehei on octyl-glyoxyl agarose beads by using CaCl2. Process Biochem 51:48–52. https://doi.org/10.1016/j.procbio.2015.11.015

    Article  CAS  Google Scholar 

  10. Dos Santos JCS, Garcia-Galan C, Rodrigues RC et al (2014) Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochem 49:1511–1515. https://doi.org/10.1016/j.procbio.2014.05.009

    Article  CAS  Google Scholar 

  11. Nagy V, Tőke ER, Keong LC et al (2006) Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. J Mol Catal B Enzym 39:141–148. https://doi.org/10.1016/j.molcatb.2006.01.012

    Article  CAS  Google Scholar 

  12. Kumar SS, Arora N, Bhatnagar R, Gupta R (2009) Kinetic modulation of Trichosporon asahii MSR 54 lipase in presence of organic solvents: altered fatty acid specificity and reversal of enantio selectivity during hydrolytic reactions. J Mol Catal B Enzym 59:41–46. https://doi.org/10.1016/j.molcatb.2008.12.013

    Article  CAS  Google Scholar 

  13. Mateos JC, Ruiz K, Rodriguez JA et al (2007) Mapping substrate selectivity of lipases from thermophilic fungi. J Mol Catal B Enzym 49:104–112. https://doi.org/10.1016/j.molcatb.2007.08.003

    Article  CAS  Google Scholar 

  14. Pérez D, Martín S, Fernández-Lorente G et al (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS ONE 6:e23325. https://doi.org/10.1371/journal.pone.0023325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Breivik H, Haraldsson GG, Kristinsson B (1997) Preparation of highly purified concentrates of eicosapentaenoic acid and docosahexaenoic acid. J Am Oil Chem Soc 74:1425–1429. https://doi.org/10.1007/s11746-997-0248-0

    Article  CAS  Google Scholar 

  16. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142. https://doi.org/10.1016/S1381-1177(02)00020-6

    Article  CAS  Google Scholar 

  17. Pizarro C, Brañes MC, Markovits A et al (2012) Influence of different immobilization techniques for Candida cylindracea lipase on its stability and fish oil hydrolysis. J Mol Catal B Enzym 78:111–118. https://doi.org/10.1016/j.molcatb.2012.03.012

    Article  CAS  Google Scholar 

  18. Chojnacka A, Gładkowski W, Grudniewska A (2017) Lipase-catalyzed transesterification of egg-yolk phophatidylcholine with concentrate of n-3 polyunsaturated fatty acids from cod liver oil. Molecules 22:23–74. https://doi.org/10.3390/molecules22101771

    Article  CAS  Google Scholar 

  19. Matsumoto T, Yamada R, Ogino H (2019) Chemical treatments for modification and immobilization to improve the solvent-stability of lipase. World J Microbiol Biotechnol 35:1–8. https://doi.org/10.1007/s11274-019-2777-8

    Article  CAS  Google Scholar 

  20. Pereira EB, Zanin GM, Castro HF (2003) Immobilization and catalytic properties of lipase on chitosan for hydrolysis and esterification reactions. Brazilian J Chem Eng 20:343–355. https://doi.org/10.1590/S0104-66322003000400002

    Article  CAS  Google Scholar 

  21. Ward K, Taylor A, Mohammed A, Stuckey DC (2020) Current applications of Colloidal Liquid Aphrons: Predispersed solvent extraction, enzyme immobilization and drug delivery. Adv Colloid Interface Sci 275:102079. https://doi.org/10.1016/j.cis.2019.102079

    Article  PubMed  CAS  Google Scholar 

  22. Filho DG, Silva AG, Guidini CZ (2019) Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 103:7399–7423. https://doi.org/10.1007/s00253-019-10027-6

    Article  PubMed  CAS  Google Scholar 

  23. Luzia C, Reis B, Yvay E et al (2019) Design of immobilized enzyme biocatalysts: drawbacks and opportunities. Quim Nova 42:768–783

    Google Scholar 

  24. Santos JCSD, Barbosa O, Ortiz C et al (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7:2413–2432. https://doi.org/10.1002/cctc.201500310

    Article  CAS  Google Scholar 

  25. Quilles Junior JC, Ferrarezi AL, Borges JP et al (2016) Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism. Bioprocess Biosyst Eng 39:1933–1943. https://doi.org/10.1007/s00449-016-1667-9

    Article  PubMed  CAS  Google Scholar 

  26. Quilles JCJ, Brito RR, Borges JP et al (2015) Modulation of the activity and selectivity of the immobilized lipases by surfactants and solvents. Biochem Eng J 93:274–280. https://doi.org/10.1016/j.bej.2014.10.009

    Article  CAS  Google Scholar 

  27. Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50:86–96. https://doi.org/10.1016/j.procbio.2014.10.019

    Article  CAS  Google Scholar 

  28. Goswami D (2019) Lipase catalysis in presence of nonionic surfactants. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-019-03212-w

    Article  PubMed  Google Scholar 

  29. Li M, Yang L-R, Xu G, Wu J-P (2013) Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148:114–120. https://doi.org/10.1016/j.biortech.2013.08.101

    Article  PubMed  CAS  Google Scholar 

  30. Virgen-Ortíz JJ, dos Santos JCS, Ortiz C et al (2019) Lecitase ultra: a phospholipase with great potential in biocatalysis. Mol Catal 473:110405. https://doi.org/10.1016/j.mcat.2019.110405

    Article  CAS  Google Scholar 

  31. Monteiro RRC, Virgen-Ortiz JJ, Berenguer-Murcia Á et al (2020) Biotechnological relevance of the lipase a from Candida antarctica. Catal Today 1:14. https://doi.org/10.1016/j.cattod.2020.03.026

    Article  CAS  Google Scholar 

  32. Venkatesagowda B, Ponugupaty E, Barbosa-Dekker AM, Dekker RFH (2018) The purification and characterization of lipases from Lasiodiplodia theobromae, and their immobilization and use for biodiesel production from coconut oil. Appl Biochem Biotechnol 185:619–640. https://doi.org/10.1007/s12010-017-2670-6

    Article  PubMed  CAS  Google Scholar 

  33. Vaidya LB, Nadar SS, Rathod VK (2020) Entrapment of surfactant modified lipase within zeolitic imidazolate framework (ZIF)-8. Int J Biol Macromol 146:678–686. https://doi.org/10.1016/j.ijbiomac.2019.12.164

    Article  PubMed  CAS  Google Scholar 

  34. Moreno-Pérez S, Guisan JM, Fernandez-Lorente G (2014) Selective ethanolysis of fish oil catalyzed by immobilized lipases. JAOCS, J Am Oil Chem Soc 91:63–69. https://doi.org/10.1007/s11746-013-2348-3

    Article  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  36. Moreno-Perez S, Turati DFM, Borges JP et al (2017) Critical role of different immobilized biocatalysts of a given lipase in the selective ethanolysis of sardine oil. J Agric Food Chem 65:117–122. https://doi.org/10.1021/acs.jafc.6b05243

    Article  PubMed  CAS  Google Scholar 

  37. Fernandez-Lorente G, Fernández-Lafuente R, Palomo JM et al (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. J Mol Catal - B Enzym 11:649–656. https://doi.org/10.1016/S1381-1177(00)00080-1

    Article  CAS  Google Scholar 

  38. Quilles Junior JC, Ferrarezi AL, Borges JP et al (2020) Ultrasound affects the selectivity and activity of immobilized lipases applied to fatty acid ethyl ester synthesis. Acta Sci Biotechnol 42:1–10

    Google Scholar 

  39. Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N et al (2017) Effect of protein load on stability of immobilized enzymes. Enzyme Microb Technol 98:18–25. https://doi.org/10.1016/j.enzmictec.2016.12.002

    Article  PubMed  CAS  Google Scholar 

  40. Tan T, Lu J, Nie K et al (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634. https://doi.org/10.1016/j.biotechadv.2010.05.012

    Article  PubMed  CAS  Google Scholar 

  41. Ganasen M, Yaacob N, Rahman RNZRA et al (2016) Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol 92:1266–1276. https://doi.org/10.1016/j.ijbiomac.2016.06.095

    Article  PubMed  CAS  Google Scholar 

  42. Fernandez-Lorente G, Cabrera Z, Godoy C et al (2008) Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochem 43:1061–1067. https://doi.org/10.1016/j.procbio.2008.05.009

    Article  CAS  Google Scholar 

  43. Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981. https://doi.org/10.1016/j.biortech.2007.04.060

    Article  PubMed  CAS  Google Scholar 

  44. Wang J (2017) Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun 53:3916–3928. https://doi.org/10.1039/c7cc00368d

    Article  CAS  Google Scholar 

  45. Chen H, Meng X, Xu X et al (2018) The molecular basis for lipase stereoselectivity. Appl Microbiol Biotechnol 102:3487–3495. https://doi.org/10.1007/s00253-018-8858-z

    Article  PubMed  CAS  Google Scholar 

  46. Haraldsson GG, Kristinsson B, Sigurdardottir R (1997) The preparation of concentrates of eicosapentaenoic acid and docosahexaenoic acid by lipase-catalyzed transesterification of fish oil with ethanol. Chem Commun 74:23–65

    Google Scholar 

  47. Akanbi TO, Adcock JL, Barrow CJ (2013) Selective concentration of EPA and DHA using Thermomyces lanuginosus lipase is due to fatty acid selectivity and not regioselectivity. Food Chem 138:615–620

    Article  CAS  PubMed  Google Scholar 

  48. Park HJ, Joo JC, Park K, Yoo YJ (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol Bioprocess Eng 17:722–728. https://doi.org/10.1007/s12257-012-0092-4

    Article  CAS  Google Scholar 

  49. Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. Sci World J 2:14. https://doi.org/10.1155/2014/625258

    Article  CAS  Google Scholar 

  50. dos Santos JCS, Bonazza HL, de Matos LJBL et al (2017) Immobilization of CALB on activated chitosan: application to enzymatic synthesis in supercritical and near-critical carbon dioxide. Biotechnol Rep 14:16–26. https://doi.org/10.1016/j.btre.2017.02.003

    Article  Google Scholar 

  51. Pinheiro MP, Monteiro RRC, Silva FFM et al (2019) Modulation of Lecitase properties via immobilization on differently activated Immobead-350: Stabilization and inversion of enantiospecificity. Process Biochem 87:128–137. https://doi.org/10.1016/j.procbio.2019.08.016

    Article  CAS  Google Scholar 

  52. Moreira KS, Moura Júnior LS, Monteiro RRC et al (2020) Optimization of the production of enzymatic biodiesel from residual babassu oil via RSM. Catalysts 10:14

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the financial support from the São Paulo Research Foundation (FAPESP – grants 2012/09054-3 and 2013/00530-0), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES – grant number 3894/13-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Carlos Quilles Junior or José Manuel Guisan.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, J.P., Quilles Junior, J.C., Moreno-Perez, S. et al. Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess Biosyst Eng 43, 2107–2115 (2020). https://doi.org/10.1007/s00449-020-02399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02399-1

Keywords

Navigation