Skip to main content

Advertisement

Log in

Effective isolation of antioxidant Phelligridin LA from the fermentation broth of Inonotus baumii by macroporous resin

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Phelligridin LA (PLA) is a natural product with vigorous free radical scavenging activities accumulated in the liquid fermentation of herbal medicinal fungus Inonotus baumii. Aiming to establish an efficient isolation method of PLA from the fermentation broth, we evaluated the adsorption of PLA by macroporous resins. The best resin ADS-17 was screened for six candidates with various physical properties and adsorption behaviors. Studies on the thermodynamics and kinetics of the process revealed that the adsorption reaction could take place spontaneously, which implied that the heat generated in adsorption might compensate for the decrease in entropy. The Freundlich theory could be utilized to fit the experimental data. The pseudo-second-order equation could describe the process, and the adsorption rate was primarily controlled by liquid film diffusion and pore diffusion. The influencing operation factors (temperature, pH, and the ratio of fermentation broth to resin) of the adsorption process were optimized with response surface methodology. The optimized condition (temperature 22.81 °C, pH 5.19, and the ratio of fermentation broth to resin or RLS 5.11) supported an adsorption rate of 97.03%. These findings would be indispensable for further optimization of the efficient separation of PLA from the fermentation broth, and the fermentation production of PLA in which separation would be included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nakamura T, Matsugo S, Uzuka Y, Matsuo S, Kawagishi H (2004) Fractionation and anti-tumor activity of the mycelia of liquid-cultured Phellinus linteus. Biosci Biotechnol Biochem 68(4):868–872. https://doi.org/10.1271/bbb.68.868

    Article  PubMed  CAS  Google Scholar 

  2. Sliva D, Jedinak A, Kawasaki J, Harvey K, Slivova V (2008) Phellinus linteus suppresses growth, angiogenesis and invasive behavior of breast cancer cells through the inhibition of AKT signaling. Br J Cancer 98(8):1348–1356. https://doi.org/10.1038/sj.bjc.6604319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhu T, Kim SH, Chen CY (2008) A medicinal mushroom: Phellinus linteus. Curr Med Chem 15(13):1330–1335. https://doi.org/10.2174/092986708784534929

    Article  PubMed  CAS  Google Scholar 

  4. Soliman AM, Teoh SL, Ghafar NA, Das S (2019) Molecular concept of diabetic wound healing: effective role of herbal remedies. Mini Rev Med Chem 19(5):381–394. https://doi.org/10.2174/1389557518666181025155204

    Article  PubMed  CAS  Google Scholar 

  5. Cheng C, Zhang H, Li Y, Zhou Y, Lu W, Yao L (2017) The effect of Diosmin on the blood proteome in a rat model of venous thrombosis. Int J Biol Macromol 104(Pt A):778–787. https://doi.org/10.1016/j.ijbiomac.2017.06.045

    Article  PubMed  CAS  Google Scholar 

  6. Wen Y, Wan YZ, Qiao CX, Xu XF, Wang J, Shen Y (2019) Immunoregenerative effects of the bionically cultured Sanghuang mushrooms (Inonotus sanghuang) on the immunodeficient mice. J Ethnopharmacol 245:112047. https://doi.org/10.1016/j.jep.2019.112047

    Article  PubMed  CAS  Google Scholar 

  7. Kim GY, Park HS, Nam BH, Lee SJ, Lee JD (2003) Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk. & M.A. Curtis) Teng. Bioresour Technol 89(1):81–87. https://doi.org/10.1016/s0960-8524(02)00273-0

    Article  PubMed  CAS  Google Scholar 

  8. Quang DN, Hashimoto T, Asakawa Y (2006) Inedible mushrooms: a good source of biologically active substances. Chem Rec 6(2):79–99. https://doi.org/10.1002/tcr.20074

    Article  PubMed  CAS  Google Scholar 

  9. Chen H, Tian T, Miao H, Zhao YY (2016) Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: areview. Fitoterapia 113:6–26. https://doi.org/10.1016/j.fitote.2016.06.009

    Article  PubMed  CAS  Google Scholar 

  10. Alberti F, Foster GD, Bailey AM (2017) Natural products from filamentous fungi and production by heterologous expression. Appl Microbiol Biotechnol 101(2):493–500. https://doi.org/10.1007/s00253-016-8034-2

    Article  PubMed  CAS  Google Scholar 

  11. Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker JR, Kim E, Cho HJ, Reynolds JM, Song MC, Park SR, Yoon YJ (2019) A review of the microbial production of bioactive natural products and biologics. Front Microbiol 10:1404. https://doi.org/10.3389/fmicb.2019.01404

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dai YC, Zhou LW, Cui BK, Chen YQ, Decock C (2010) Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87(5):1587–1593. https://doi.org/10.1007/s00253-010-2711-3

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Shi S, Tu M, Via B, Sun FF, Adhikari S (2018) Detoxification of organosolv-pretreated pine prehydrolysates with anion resin and cysteine for butanol fermentation. Appl Biochem Biotechnol 186(3):662–680. https://doi.org/10.1007/s12010-018-2769-4

    Article  PubMed  CAS  Google Scholar 

  14. Song M, Jiao P, Qin T, Jiang K, Zhou J, Zhuang W, Chen Y, Liu D, Zhu C, Chen X, Ying H, Wu J (2017) Recovery of lactic acid from the pretreated fermentation broth based on a novel hyper-cross-linked meso-micropore resin: modeling. Bioresour Technol 241:593–602. https://doi.org/10.1016/j.biortech.2017.05.179

    Article  PubMed  CAS  Google Scholar 

  15. Li J, Chase HA (2010) Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat Prod Rep 27(10):1493–1510. https://doi.org/10.1039/C0NP00015A

    Article  PubMed  CAS  Google Scholar 

  16. Ren J, Zheng Y, Lin Z, Han X, Liao W (2017) Macroporous resin purification and characterization of flavonoids from Platycladus orientalis (L.) Franco and their effects on macrophage inflammatory response. Food Funct 8(1):86–95. https://doi.org/10.1039/c6fo01474g

    Article  PubMed  CAS  Google Scholar 

  17. Bai CL, Zhao GR (2015) Separation of salvianic acid A from the fermentation broth of engineered Escherichia coli using macroporous resins. J Sep Sci 38(16):2833–2840. https://doi.org/10.1002/jssc.201500416

    Article  PubMed  CAS  Google Scholar 

  18. Wang T, Li H, Liang C, Sun S, Liu A, Zhu H (2020) Purification and characterization of a novel antioxidant Phelligridin LA produced by Inonotus baumii. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6430

    Article  Google Scholar 

  19. Li H, Jiao X, Zhou W, Sun Y, Liu W, Lin W, Liu A, Song A, Zhu H (2018) Enhanced production of total flavones from Inonotus baumii by multiple strategies. Prep Biochem Biotechnol 48(2):103–112. https://doi.org/10.1080/10826068.2017.1365248

    Article  PubMed  CAS  Google Scholar 

  20. Wang T, Li H, Liang C, Sun S, Liu A, Zhu H (2020) The high-efficient production of phelligridin LA by Inonotus baumii with an integrated fermentation-separation process. Bioprocess Biosyst Eng 43(7):1141–1151. https://doi.org/10.1007/s00449-020-02310-y

    Article  PubMed  CAS  Google Scholar 

  21. Tanzifi M, Yaraki MT, Kiadehi AD, Hosseini SH, Olazar M, Bharti AK, Agarwal S, Gupta VK, Kazemi A (2018) Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modeling. J Colloid Interface Sci 510:246–261. https://doi.org/10.1016/j.jcis.2017.09.055

    Article  PubMed  CAS  Google Scholar 

  22. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  23. Forte M, Mita L, Perrone R, Rossi S, Argiro M, Mita DG, Guida M, Portaccio M, Godievargova T, Ivanov Y, Tamer MT, Omer AM, Mohy Eldin MS (2017) Removal of methylparaben from synthetic aqueous solutions using polyacrylonitrile beads: kinetic and equilibrium studies. Environ Sci Pollut Res Int 24(2):1270–1282. https://doi.org/10.1007/s11356-016-7846-z

    Article  PubMed  CAS  Google Scholar 

  24. Wang X, Jiang C, Hou B, Wang Y, Hao C, Wu J (2018) Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 206:587–596. https://doi.org/10.1016/j.chemosphere.2018.04.183

    Article  PubMed  CAS  Google Scholar 

  25. Piai L, Dykstra JE, Adishakti MG, Blokland M, Langenhoff AAM, van der Wal A (2019) Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Res 162:518–527. https://doi.org/10.1016/j.watres.2019.06.012

    Article  PubMed  CAS  Google Scholar 

  26. Lorenc-Grabowska E, Gryglewicz G (2005) Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. J Colloid Interface Sci 284(2):416–423. https://doi.org/10.1016/j.jcis.2004.10.031

    Article  PubMed  CAS  Google Scholar 

  27. Li Y, Zhang F, Banakar S, Li Z (2018) Comprehensive optimization of precursor-directed production of BC194 by Streptomyces rochei MB037 derived from the marine sponge Dysidea arenaria. Appl Microbiol Biotechnol 102(18):7865–7875. https://doi.org/10.1007/s00253-018-9237-5

    Article  PubMed  CAS  Google Scholar 

  28. Xiong N, Yu R, Chen T, Xue YP, Liu ZQ, Zheng YG (2019) Separation and purification of l-methionine from E. coli fermentation broth by macroporous resin chromatography. J Chromatogr B Anal Technol Biomed Life Sci 1110–1111:108–115. https://doi.org/10.1016/j.jchromb.2019.02.016

    Article  CAS  Google Scholar 

  29. Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of China (U1805234 and 31800075), Natural Science Foundation of Fujian Province of China (2019J01264), 863 Program (2015AA020925), Minjiang Scholar (2013A13), Scientific Research Start-up Fund for High-Level Talents in Fujian Normal University (004828), and Fundamental Research Funds for the Central Universities (18CX02124A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhu.

Ethics declarations

Conflict of interest

There is no conflict of interest related to this publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Supplementary file2 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Sun, S., Liang, C. et al. Effective isolation of antioxidant Phelligridin LA from the fermentation broth of Inonotus baumii by macroporous resin. Bioprocess Biosyst Eng 43, 2095–2106 (2020). https://doi.org/10.1007/s00449-020-02398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02398-2

Keywords

Navigation