Skip to main content
Log in

Advanced nitrogen and phosphorus removal from municipal wastewater via simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) combined with anammox

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, a novel laboratory-scale synchronous enhanced biological phosphorus removal and semi-nitritation (termed as EBPR-SN) combined with anammox process was put forward for achieving nutrient elimination from municipal wastewater at 27 ℃. This process consisted of two 10 L sequencing batch reactors (SBRs), i.e. EBPR-SN SBR followed by Anammox SBR. The EBPR-SN SBR was operated for 400 days with five periods and the Anammox SBR was operated starting on period IV. Eventually, for treating municipal wastewater containing low chemical oxygen demand/nitrogen (COD/N) of 3.2 (mg/mg), the EBPR-SN plus Anammox system performed advanced total inorganic nitrogen (TIN) and P removal, with TIN and P removal efficiencies of 81.4% and 94.3%, respectively. Further analysis suggested that the contributions of simultaneous partial nitrification denitrification, denitrification, and anammox to TIN removal were 15.0%, 45.0%, and 40.0%, respectively. The enriched phosphorus-accumulating organisms (PAOs) in the EBPR-SN SBR facilitated P removal. Besides, the EBPR-SN SBR achieved P removal and provided stable anammox substrates, suggesting a short sludge retention time (SRT 12 d) could achieve synergy between ammonia-oxidizing bacteria and PAOs. These results provided an alternative process for treating municipal wastewater with limited organics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AOB:

Ammonia-oxidizing bacteria

C/N:

Carbon/nitrogen

COD:

Chemical oxygen demand

DN:

Denitrification

DO:

Dissolved oxygen

EBPR-SN:

Enhanced biological phosphorus removal and semi-nitritation

FNA:

Free nitrite acid

GAOs:

Glycogen-accumulating organisms

Gly:

Glycogen

MLSS:

Mixed liquor suspended solids

N:

Nitrogen

NAR:

Nitrite accumulation ratio

NOB:

Nitrite-oxidizing bacteria

OHO:

Ordinary heterotrophic organisms

P:

Phosphorus

PAOs:

Phosphorus-accumulating organisms

PHAs:

Polyhydroxyalkanoates

PHB:

Poly-b-hydroxybutyrate

PHV:

Poly-b-hydroxyvalerate

PRA:

Phosphorus release amount

PUA:

Phosphorus uptake amount

SBR:

Sequencing batch reactor

SPND:

Simultaneous partial nitrification denitrification

SRT:

Sludge retention time

TIN:

Total inorganic nitrogen

WWTP:

Wastewater treatment plants

References

  1. Li J, Li J, Gao R et al (2018) A critical review of one-stage anammox processes for treating industrial wastewater: optimization strategies based on key functional microorganisms. Bioresource Technol 265:498–505

    CAS  Google Scholar 

  2. Li J, Peng Y, Zhang L et al (2019) Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. Water Res 160:178–187

    PubMed  CAS  Google Scholar 

  3. Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. Fems Microbiol Ecol 16(3):177–183

    CAS  Google Scholar 

  4. Ma B, Wang S, Cao S et al (2016) Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour Technol 200:981–990

    PubMed  CAS  Google Scholar 

  5. Oehmen A, Lemos PC, Carvalho G et al (2007) Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res 41(11):2271–2300

    PubMed  CAS  Google Scholar 

  6. Tuszynska A, Kaszubowska M, Kowal P, Ciesielski S, Makinia J (2019) The metabolic activity of denitrifying microorganisms accumulating polyphosphate in response to addition of fusel oil. Bioproc Biosyst Eng 42(1):143–155

    CAS  Google Scholar 

  7. Miao Y, Peng Y, Zhang L et al (2018) Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios. Chem Eng J 334:664–672

    CAS  Google Scholar 

  8. Mino T, Van Loosdrecht M, Heijnen JJ (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32(11):3193–3207

    CAS  Google Scholar 

  9. Yang Y, Zhang L, Shao H, Zhang S, Gu P, Peng Y (2017) Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox. Front Env Sci Eng 11:82

    Google Scholar 

  10. Cao Y, Kwok BH, van Loosdrecht MCM et al (2017) The occurrence of enhanced biological phosphorus removal in a 200,000 m(3)/day partial nitration and Anammox activated sludge process at the Changi water reclamation plant. Singapore Water Sci Technol 75(3):741–751

    PubMed  CAS  Google Scholar 

  11. Ma H, Xue Y, Zhang Y, Kobayashi T, Kubota K, Li Y (2020) Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C. Water Res 172:115510

    PubMed  CAS  Google Scholar 

  12. Wen X, Zhou J, Li Y, Qing X, He Q (2016) A novel process combining simultaneous partial nitrification, anammox and denitrification (SNAD) with denitrifying phosphorus removal (DPR) to treat sewage. Bioresour Technol 222:309–316

    PubMed  CAS  Google Scholar 

  13. Yan Y, Wang Y, Wang W, Zhou S, Wang J, Guo J (2019) Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition. Water Res 153:284–294

    PubMed  CAS  Google Scholar 

  14. Zhang F, Peng Y, Miao L, Wang Z, Wang S, Li B (2017) A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate. Chem Eng J 313:619–628

    CAS  Google Scholar 

  15. Ali M, Okabe S (2015) Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues. Chemosphere 141:144–153

    PubMed  CAS  Google Scholar 

  16. Ma Y, Peng Y, Wang S, Yuan Z, Wang X (2009) Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Res 43(3):563–572

    PubMed  CAS  Google Scholar 

  17. Yang Q, Peng Y, Liu X, Zeng W, Mino T, Satoh H (2007) Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities. Environ Sci Technol 41(23):8159–8164

    PubMed  CAS  Google Scholar 

  18. Winkler MKH, Kleerebezem R, Khunjar WO, de Bruin B, van Loosdrecht MCM (2012) Evaluating the solid retention time of bacteria in flocculent and granular sludge. Water Res 46(16):4973–4980

    PubMed  CAS  Google Scholar 

  19. Liu W, Yang Q, Ma B et al (2017) Rapid achievement of nitritation using aerobic starvation. Environ Sci Technol 51(7):4001–4008

    PubMed  CAS  Google Scholar 

  20. Ge S, Wang S, Yang X, Qiu S, Li B, Peng Y (2015) Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: a review. Chemosphere 140:85–98

    PubMed  CAS  Google Scholar 

  21. APHAs (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  22. Oehmen A, Zeng RJ, Saunders AM, Blackall LL, Keller J, Yuan Z (2006) Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. Microbiol-Sgm 152(9):2767–2778

    CAS  Google Scholar 

  23. Zeng RJ, van Loosdrecht M, Yuan ZG, Keller J (2003) Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnol Bioeng 81(1):92–105

    PubMed  CAS  Google Scholar 

  24. Bernet N, Dangcong P, Delgenes JP, Moletta R (2001) Nitrification at low oxygen concentration in biofilm reactor. J Environ Eng 127(3):266–271

    CAS  Google Scholar 

  25. Wu J, He C, van Loosdrecht MCM, Perez J (2016) Selection of ammonium oxidizing bacteria, (AOB) over nitrite oxidizing bacteria (NOB) based on conversion rates. Chem Eng J 304:953–961

    CAS  Google Scholar 

  26. Du R, Cao S, Li B, Niu M, Wang S, Peng Y (2017) Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Res 108:46–56

    PubMed  CAS  Google Scholar 

  27. Fuessel J, Lam P, Lavik G et al (2012) Nitrite oxidation in the namibian oxygen minimum zone. Isme J 6(6):1200–1209

    CAS  Google Scholar 

  28. Veuger B, Pitcher A, Schouten S, Damste JSS, Middelburg JJ (2013) Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea. Biogeosciences 10(3):1775–1785

    CAS  Google Scholar 

  29. Wang X, Wang S, Xue T, Li B, Dai X, Peng Y (2015) Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Res 77:191–200

    PubMed  CAS  Google Scholar 

  30. Carucci A, Kuhni M, Brun R et al (1999) Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing carbon feed. Water Sci Technol 39(1):75–85

    CAS  Google Scholar 

  31. Smolders G, Vandermeij J, Vanloosdrecht M, Heijnen JJ (1994) Model of the anaerobic metabolism of the biological phosphorus removal process-stoichiometry and pH Influence. Biotechnol Bioeng 43(6):461–470

    PubMed  CAS  Google Scholar 

  32. Filipe C, Daigger GT, Grady C (2001) A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: Stoichiometry, kinetics, and the effect of pH. Biotechnol Bioeng 76(1):17–31

    PubMed  CAS  Google Scholar 

  33. Smolders G, Vandermeij J, Vanloosdrecht M, Heijnen JJ (1994) Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol Bioeng 44(7):837–848

    PubMed  CAS  Google Scholar 

  34. Coats ER, Brinkman CK, Lee S (2017) Characterizing and contrasting the microbial ecology of laboratory and full-scale EBPR systems cultured on synthetic and real wastewaters. Water Res 108:124–136

    PubMed  CAS  Google Scholar 

  35. Saito T, Brdjanovic D, van Loosdrecht M (2004) Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res 38(17):3760–3768

    PubMed  CAS  Google Scholar 

  36. Pijuan M, Ye L, Yuan Z (2010) Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms. Water Res 44(20):6063–6072

    PubMed  CAS  Google Scholar 

  37. Zeng W, Yang Y, Li L, Wang X, Peng Y (2011) Effect of nitrite from nitritation on biological phosphorus removal in a sequencing batch reactor treating domestic wastewater. Bioresour Technol 102(12):6657–6664

    PubMed  CAS  Google Scholar 

  38. Yuan Y, Peng Y, Liu Y, Jin B, Wang B, Wang S (2014) Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions. Bioresour Technol 174:1–5

    PubMed  CAS  Google Scholar 

  39. Zhao W, Zhang Y, Lv P, Wang M, Peng Y, Li B (2016) Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A(2)NSBR) treating low carbon/nitrogen (C/N) wastewater. Chem Eng J 302:296–304

    CAS  Google Scholar 

  40. Wang F, Lu S, Wei Y, Ji M (2009) Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. J Hazard Mater 164(2–3):1223–1227

    PubMed  CAS  Google Scholar 

  41. Rahimi Y, Torabian A, Mehrdadi N, Shahmoradi B (2011) Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J Hazard Mater 185(2–3):852–857

    PubMed  CAS  Google Scholar 

  42. Lo IW, Lo KV, Mavinic DS, Shiskowski D, Ramey W (2010) Contributions of biofilm and suspended sludge to nitrogen transformation and nitrous oxide emission in hybrid sequencing batch system. J Environ Sci-China 22(7):953–960

    PubMed  CAS  Google Scholar 

  43. Du R, Peng Y, Ji J, Shi L, Gao R, Li X (2019) Partial denitrification providing nitrite: Opportunities of extending application for anammox. Environ Int 131:105001

    PubMed  CAS  Google Scholar 

  44. Du R, Cao S, Li B, Zhang H, Wang S, Peng Y (2019) Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature. Bioresour Technol 274:386–394

    PubMed  CAS  Google Scholar 

  45. Ji J, Peng Y, Li X, Zhang Q, Liu X (2020) A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures. Water Res 175:115690

    PubMed  CAS  Google Scholar 

  46. Gao D, Peng Y, Li B, Liang H (2008) Shortcut nitrification-denitrification by real-time control strategies. J Biotechnol 136S:S652

    Google Scholar 

  47. Ji J, Peng Y, Wang B, Li X, Zhang Q (2020) A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation. Water Res 170:115363

    PubMed  CAS  Google Scholar 

  48. Liu J, Yuan Y, Li B et al (2017) Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. Bioresour Technol 244:1158–1165

    PubMed  CAS  Google Scholar 

  49. Jin B, Niu J, Zhang J et al (2020) Response of extracellular polymeric substances and enzymatic activity to salinity for the waste activated sludge anaerobic fermentation process. Bioproc Biosyst Eng 43(4):737–745

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Research and Development Program of China (2016YFC0401103), National Natural Science Foundation of China (21806006), Beijing Municipal Science & Technology Project (D171100001017002), and the Funding Projects of Beijing Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhen Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Peng, Y., Ji, J. et al. Advanced nitrogen and phosphorus removal from municipal wastewater via simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) combined with anammox. Bioprocess Biosyst Eng 43, 2039–2052 (2020). https://doi.org/10.1007/s00449-020-02392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02392-8

Keywords

Navigation