Skip to main content

Advertisement

Log in

Enhanced volatile fatty acid production from sago hampas by Clostridium beijerinckii SR1 for bioelectricity generation using microbial fuel cells

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sago hampas is a starch-based biomass from sago processing industries consisted of 58% remaining starch. This study has demonstrated the bioconversion of sago hampas to volatile fatty acids (VFAs) by Clostridium beijerinckii SR1 via anaerobic digestion. Higher total VFAs were obtained from sago hampas (5.04 g/L and 0.287 g/g) as compared to commercial starch (5.94 g/L and 0.318 g/g). The physical factors have been investigated for the enhancement of VFAs production using one-factor-at-a-time (OFAT). The optimum condition; 3% substrate concentration, 3 g/L of yeast extract concentration and 2 g/L of ammonium nitrate enhanced the production of VFAs by 52.6%, resulted the total VFAs produced is 7.69 g/L with the VFAs yield of 0.451 g/g. VFAs hydrolysate produced successfully generated 273.4 mV of open voltage circuit and 61.5 mW/m2 of power density in microbial fuel cells. It was suggested that sago hampas provide as an alternative carbon feedstock for bioelectricity generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

C/N:

Carbon per nitrogen

PEM:

Proton exchange membrane

OFAT:

One factor at a time

RCM:

Reinforced clostridium media

VFAs:

Volatile fatty acids

YE:

Yeast extract

References

  1. Husin H, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S (2019) Simultaneous saccharification and fermentation of sago hampas into biobutanol by Clostridium acetobutylicum ATCC 824. Energy Sci Eng 7:66–75. https://doi.org/10.1002/ese3.226

    Article  CAS  Google Scholar 

  2. Jenol MA, Ibrahim MF, Bahrin EK et al (2019) Direct bioelectricity generation from sago hampas. Molecules 24:2397

    Article  CAS  Google Scholar 

  3. Awg-Adeni DS, Abd-Aziz S, Bujang KB, Hassan MA (2010) Bioconversion of sago residue into value added products. African J Biotechnol 9:2016–2021

    CAS  Google Scholar 

  4. Jenol MA, Ibrahim MF, Yee PL et al (2014) Sago biomass as a sustainable source for biohydrogen production by Clostridium butyricum A1. BioResources 9:1007–1026

    Google Scholar 

  5. Linggang S, Yee PL, Wasoh MH, Abd-Aziz S (2012) Sago pith residue as an alternative cheap substrate for fermentable sugars production. Appl Biochem Biotechnol 167:122–131. https://doi.org/10.1007/s12010-012-9592-0

    Article  PubMed  CAS  Google Scholar 

  6. Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S (2013) Recovery of glucose from residual starch of sago hampas for bioethanol production. Biomed Res Int. https://doi.org/10.1155/2013/935852

    Article  PubMed  Google Scholar 

  7. Awg-Adeni DS (2015) Bioethanol production from residual starch of sago (Metroxylon sago) hampas. Doctoral thesis, Universiti Putra Malaysia, Selangor, Malaysia. Retrieved from http://psasir.upm.edu.my/id/eprint/66550/1/FBSB%202015%2026%20IR.pdf

  8. Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100:1–9. https://doi.org/10.1016/j.biortech.2008.06.022

    Article  PubMed  CAS  Google Scholar 

  9. Huang W, Huang W, Yuan T et al (2016) Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate. Water Res 90:344–353. https://doi.org/10.1016/j.watres.2015.12.044

    Article  PubMed  CAS  Google Scholar 

  10. Sawatdeenarunat C, Sung S, Khanal SK (2017) Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation. Bioresour Technol 237:139–145. https://doi.org/10.1016/j.biortech.2017.02.029

    Article  PubMed  CAS  Google Scholar 

  11. Jin X, Li X, Zhao N et al (2017) Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process. Water Res 111:74–80. https://doi.org/10.1016/j.watres.2016.12.045

    Article  PubMed  CAS  Google Scholar 

  12. Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99. https://doi.org/10.1016/j.cej.2013.09.002

    Article  CAS  Google Scholar 

  13. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  14. Toczyłowska-Mamińska R, Szymona K, Król P et al (2018) Evolving microbial communities in cellulose-fed microbial fuel cell. Energies 11:1–12. https://doi.org/10.3390/en11010124

    Article  CAS  Google Scholar 

  15. Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402. https://doi.org/10.1007/s00253-007-1162-y

    Article  PubMed  CAS  Google Scholar 

  16. Borole AP, Hamilton CY, Vishnivetskaya T et al (2009) Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochem Eng J 48:71–80. https://doi.org/10.1016/j.bej.2009.08.008

    Article  CAS  Google Scholar 

  17. De Cárcer DA, Ha PT, Jang JK, Chang IS (2011) Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions. Appl Microbiol Biotechnol 89:605–612. https://doi.org/10.1007/s00253-010-2903-x

    Article  PubMed  CAS  Google Scholar 

  18. Yu J, Park Y, Kim B, Lee T (2015) Power densities and microbial communities of brewery wastewater-fed microbial fuel cells according to the initial substrates. Bioprocess Biosyst Eng 38:85–92. https://doi.org/10.1007/s00449-014-1246-x

    Article  PubMed  CAS  Google Scholar 

  19. Freguia S, Teh EH, Boon N et al (2010) Microbial fuel cells operating on mixed fatty acids. Bioresour Technol 101:1233–1238. https://doi.org/10.1016/j.biortech.2009.09.054

    Article  PubMed  CAS  Google Scholar 

  20. Teng SX, Tong ZH, Li WW et al (2010) Electricity generation from mixed volatile fatty acids using microbial fuel cells. Appl Microbiol Biotechnol 87:2365–2372. https://doi.org/10.1007/s00253-010-2746-5

    Article  PubMed  CAS  Google Scholar 

  21. Choi JDR, Chang HN, Han JI (2011) Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol Lett 33:705–714. https://doi.org/10.1007/s10529-010-0507-2

    Article  PubMed  CAS  Google Scholar 

  22. Chang HN, Kim NJ, Kang J, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15:1–10. https://doi.org/10.1007/s12257-009-3070-8

    Article  CAS  Google Scholar 

  23. Md Salleh M (2016) Application of fed batch system in the production of biobutanol by Clostridium sp using lemongrass leaves hydrolysate. In: 2016 Korean Society for Biotechnology Spring Conference and International Symposium, Korea, Apr 2016. Korean Society for Biotechnology

  24. Park GW, Kim I, Jung K et al (2015) Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment. Bioprocess Biosyst Eng 38:1623–1627. https://doi.org/10.1007/s00449-015-1387-6

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Z, Meng Q, Yu Z (2011) Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl Environ Microbiol 77:2634–2639. https://doi.org/10.1128/AEM.02779-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Basu S, Agarwal A, Pramanik H (2008) Improvement in performance of a direct ethanol fuel cell: effect of sulfuric acid and Ni-mesh. Electrochem commun 10:1254–1257. https://doi.org/10.1016/j.elecom.2008.05.042

    Article  CAS  Google Scholar 

  27. Nakamura LK (1981) Lactorbacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Bacteriol 31:56–63

    Article  CAS  Google Scholar 

  28. Goering HK, Van Soest PJ (1970) Forage fiber analyses: apparatus, reagents, procedures, and some applications (No. 379). Agricultural Research Service, US Department of Agriculture, Washington, DC

  29. Ibrahim MF, Abd-Aziz S, Razak MNA et al (2012) Oil palm empty fruit bunch as alternative substrate for acetone-butanol-ethanol production by Clostridium butyricum EB6. Appl Biochem Biotechnol 166:1615–1625. https://doi.org/10.1007/s12010-012-9538-6

    Article  PubMed  CAS  Google Scholar 

  30. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12–16. https://doi.org/10.1080/00031305.1978.10479236

    Article  Google Scholar 

  31. Md Salleh M, Ariff AB, Sahaid KM et al (2001) Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World J Microbiol Biotechnol 17:567–576. https://doi.org/10.1023/A:1012351112351

    Article  Google Scholar 

  32. Xue C, Zhao J, Chen L et al (2017) Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 35:310–322. https://doi.org/10.1016/j.biotechadv.2017.01.007

    Article  PubMed  CAS  Google Scholar 

  33. Linggang S, Phang LY, Wasoh H, Abd-Aziz S (2013) Acetone-Butanol-Ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. Bioenergy Res 6:321–328. https://doi.org/10.1007/s12155-012-9260-9

    Article  CAS  Google Scholar 

  34. Sun X, Atiyeh HK, Adesanya YA et al (2019) Enhanced acetone-butanol-ethanol production by Clostridium beijerinckii using biochar. ASABE Annu Int Meet. https://doi.org/10.13031/aim.201900256

    Article  Google Scholar 

  35. Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27:764–781

    Article  CAS  Google Scholar 

  36. Ibrahim MF, Linggang S, Jenol MA et al (2015) Effect of buffering system on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum ATCC 824 using pretreated oil palm empty fruit bunch. BioResources 10:3890–3907. https://doi.org/10.15376/biores.10.3.3890-3907

    Article  CAS  Google Scholar 

  37. Dürre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362. https://doi.org/10.1196/annals.1419.009

    Article  PubMed  CAS  Google Scholar 

  38. Chong M-L, Abdul Rahman NA, Rahim RA et al (2009) Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int J Hydrogen Energy 34:7475–7482. https://doi.org/10.1016/j.ijhydene.2009.05.088

    Article  CAS  Google Scholar 

  39. Chong M-L, Rahim RA, Shirai Y, Hassan MA (2009) Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrogen Energy 34:764–771. https://doi.org/10.1016/j.ijhydene.2008.10.095

    Article  CAS  Google Scholar 

  40. Liu H, Huang D, Wen J (2016) Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum. Microb Cell Fact 15:1–14. https://doi.org/10.1186/s12934-016-0436-4

    Article  CAS  Google Scholar 

  41. Yang X, Tu M, Xie R et al (2013) A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum. AMB Express 3:3. https://doi.org/10.1186/2191-0855-3-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hung HC, Awg-Adeni DS, Johnny Q, Vincent M (2018) Production of bioethanol from sago hampas via simultaneous saccharification and fermentation (SSF). Nusant Biosci 10:240–245. https://doi.org/10.13057/nusbiosci/n100407

    Article  Google Scholar 

  43. Sindhu R, Binod P, Pandey A (2016) α-Amylases. Curr Dev Biotechnol Bioeng Prod Isol Purif Ind Prod. https://doi.org/10.1016/B978-0-444-63662-1.00001-4

    Article  Google Scholar 

  44. Wang X, Jin B, Mulcahy D (2008) Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5. Int J Hydrogen Energy 33:4998–5005. https://doi.org/10.1016/j.ijhydene.2008.07.078

    Article  CAS  Google Scholar 

  45. Chang HN, Kim NJ, Kang J et al (2011) Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess Biosyst Eng 34:419–431. https://doi.org/10.1007/s00449-010-0485-8

    Article  PubMed  CAS  Google Scholar 

  46. Desai RP, Harris LM, Welker NE, Papoutsakis ET (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab Eng 1:206–213

    Article  CAS  Google Scholar 

  47. Buehler EA, Mesbah A (2016) Kinetic study of acetone-butanol-ethanol fermentation in continuous culture. PLoS ONE 11:1–21. https://doi.org/10.1371/journal.pone.0158243

    Article  CAS  Google Scholar 

  48. Razak MNA, Ibrahim MF, Yee PL et al (2013) Statistical optimization of biobutanol production from oil palm decanter cake hydrolysate by Clostridium acetobutylicum ATCC 824. BioResources 8:1758–1770

    Google Scholar 

  49. Khani M, Bahrami A, Chegeni A et al (2016) Optimization of carbon and nitrogen sources for extracellular polymeric substances production by Chryseobacterium indologenes MUT2. Iran J Biotechnol 14:13–18. https://doi.org/10.15171/ijb.1266

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ehara H, Toyoda Y, Johnson DV (2018) Sago palm: multiple contributions to food security and sustainable livelihoods. Springer, Singapore

    Book  Google Scholar 

  51. Fernández-Naveira Á, Veiga MC, Kennes C (2017) H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotechnol 92:712–731. https://doi.org/10.1002/jctb.5194

    Article  CAS  Google Scholar 

  52. Shi X, Lin J, Zuo J et al (2017) Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. J Environ Sci (China) 55:49–57. https://doi.org/10.1016/j.jes.2016.07.006

    Article  CAS  Google Scholar 

  53. Jiang J, Zhang Y, Li K et al (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530. https://doi.org/10.1016/j.biortech.2013.06.025

    Article  PubMed  CAS  Google Scholar 

  54. Zhang JN, Li YH, Zheng HQ et al (2015) Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol 192:60–67. https://doi.org/10.1016/j.biortech.2015.05.034

    Article  PubMed  CAS  Google Scholar 

  55. Shanmugam S, Sun C, Zeng X, Wu YR (2018) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol 256:543–547. https://doi.org/10.1016/j.biortech.2018.02.077

    Article  PubMed  CAS  Google Scholar 

  56. Vilanova M, Ugliano M, Varela C et al (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157. https://doi.org/10.1007/s00253-007-1145-z

    Article  PubMed  CAS  Google Scholar 

  57. Torrea D, Varela C, Ugliano M et al (2011) Comparison of inorganic and organic nitrogen supplementation of grape juice—effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem 127:1072–1083. https://doi.org/10.1016/j.foodchem.2011.01.092

    Article  PubMed  CAS  Google Scholar 

  58. Galadima AI, Deba AA, Mienda S, Wante SP (2015) Optimum utilization of Clostridia species towards biofuel production. Int J Curr Sci 14:82–90

    Google Scholar 

  59. Tran HTM, Cheirsilp B, Umsakul K, Bourtoom T (2011) Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of clostridium butylicum and bacillus subtilis. Maejo Int J Sci Technol 5:374–389

    CAS  Google Scholar 

  60. Finch AS, Mackie TD, Sund CJ, Sumner JJ (2011) Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour Technol 102:312–315. https://doi.org/10.1016/j.biortech.2010.06.149

    Article  PubMed  CAS  Google Scholar 

  61. Poincare H, Nancy I (1976) Carbon and electron flow in Clostridium butyricum grown in chemostat culture on glycerol and on glucose. Microbiology 142:1149–1158. https://doi.org/10.1099/13500872-142-5-1149

    Article  Google Scholar 

  62. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662. https://doi.org/10.1021/es048927c

    Article  PubMed  CAS  Google Scholar 

  63. Chae KJ, Choi MJ, Lee JW et al (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525. https://doi.org/10.1016/j.biortech.2009.02.065

    Article  PubMed  CAS  Google Scholar 

  64. Li X, Zhang R, Qian Y et al (2017) The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent. Bioresour Technol 236:37–43. https://doi.org/10.1016/j.biortech.2017.03.160

    Article  PubMed  CAS  Google Scholar 

  65. Min B, Cheng S, Logan BE (2005) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686. https://doi.org/10.1016/j.watres.2005.02.002

    Article  PubMed  CAS  Google Scholar 

  66. Esteve-Núñez A, Sosnik J, Visconti P, Lovley DR (2008) Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens. Environ Microbiol 10:497–505. https://doi.org/10.1111/j.1462-2920.2007.01470.x

    Article  PubMed  CAS  Google Scholar 

  67. Shi L, Richardson DJ, Wang Z et al (2009) The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 1:220–227. https://doi.org/10.1111/j.1758-2229.2009.00035.x

    Article  PubMed  CAS  Google Scholar 

  68. Krige A, Sjöblom M, Ramser K et al (2019) On-line Raman spectroscopic study of cytochromes’ redox state of biofilms in microbial fuel cells. Molecules 24:646. https://doi.org/10.3390/molecules24030646

    Article  PubMed Central  CAS  Google Scholar 

  69. Li XM, Cheng KY, Selvam A, Wong JWC (2013) Bioelectricity production from acidic food waste leachate using microbial fuel cells: effect of microbial inocula. Process Biochem 48:283–288. https://doi.org/10.1016/j.procbio.2012.10.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the MyBrain 15 from Malaysian Higher Education Ministry for the financial support. We would like to share our greatest attitude to all the members of the Environmental Biotechnology Research Group, Universiti Putra Malaysia for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraini Abd-Aziz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenol, M.A., Ibrahim, M.F., Kamal Bahrin, E. et al. Enhanced volatile fatty acid production from sago hampas by Clostridium beijerinckii SR1 for bioelectricity generation using microbial fuel cells. Bioprocess Biosyst Eng 43, 2027–2038 (2020). https://doi.org/10.1007/s00449-020-02391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02391-9

Keywords

Profiles

  1. Mohamad Faizal Ibrahim