Skip to main content
Log in

Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats

Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Cite this article

Abstract

Polycystic ovary syndrome (PCOS) is associated with gut microbiota disturbance. Emerging evidence has shown that gut microbiota plays a major role in the development of PCOS. To better understand how the gut microbiota contributes to the development of PCOS, we investigated the influences of high-fat diet and hyperandrogenism, independently or synergistically, have on the gut microbiota in rats. Furthermore, we explored the associations between gut microbiota and hyperandrogenism or other hallmarks of PCOS. Twenty female SD rats were randomized at aged 3 weeks into 4 groups (n = 5, each); HA: PCOS rats fed with ordinary diet; HF: rats with high-fat diet (HFD); HA-HF: PCOS rats fed with HFD; and C: control rats with ordinary diet. PCOS rat model was induced by 5α-dihydrotestosterone (DHT) injection for 6 weeks. The fasting blood glucose (FBG), plasma insulin, testosterone, free testosterone, TNF-α, MDA, SOD, LPS, TLR4, TG, TC, HDL-C, and LDL-C levels were measured. The molecular ecology of the fecal gut microbiota was analyzed by 16S rDNA high-throughput sequencing. The results showed that rats in the HA and HA-HF group displayed abnormal estrous cycles with increasing androgen level and exhibited multiple large cysts with diminished granulosa layers in ovarian tissues. Compare with the C group, relative abundance of the Bacteroidetes phylum decreased significantly in the other groups (P < 0.05). The Chao1 was the highest in the group C and significantly higher than the HA-HF group (P < 0.05). T, FT, insulin, MDA, LPS, and TNF-α levels had the negative correlation with the richness of community (Chao1 index) in the gut. The rats in the HF and HA-HF groups tended to have lower Shannon and Simpson indices than the C group (P < 0.01, respectively). However, there were no significant differences between C group and the HA group in the Shannon and Simpson values. Beta diversity analysis was then performed based on a weighted UniFrac analysis. The PCoA plots showed a clear separation of the C group from the other groups. ANOSIM analysis of variance confirmed that there were statistically significant separations between the C group and the HA, HA-HF, and HF groups (P < 0.01, respectively). These results showed that DHT with HFD could lower diversity of the gut microbial community. Both HFD and DHT could shift the overall gut microbial composition and change the composition of the microbial community in gut. Furthermore, our analyses demonstrated that the levels of TG, MDA, TNF-α, LPS, TLR4, T, FT, FINS, and HDL-C were correlated with the changes of in the gut microbiome. HFD and DHT were associated with the development and pathology of PCOS by shaping gut microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Landay M, Huang A, Azziz R et al (2009) Degree of hyperinsulinemia, independent of androgen levels, is an important determinant of the severity of hirsutism in PCOS. Fertil Steril 92(2):643–647

    CAS  PubMed  Google Scholar 

  2. Lim S, Norman RJ, Davies MJ et al (2013) The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev 14(2):95–109

    CAS  PubMed  Google Scholar 

  3. Ching H, Burke V, Stuckey BG et al (2007) Quality of life and psychological morbidity in women with polycystic ovary syndrome: body mass index, age and the provision of patient information are significant modifiers. Clin Endocrinol 66(3):373–379

    CAS  Google Scholar 

  4. Glueck CJ, Dharashivkar S, Wang P et al (2005) Obesity and extreme obesity, manifest by ages 20–24 years, continuing through 32–41 years in women, should alert physicians to the diagnostic likelihood of polycystic ovary syndrome as a reversible underlying endocrinopathy. Eur J Obstet Gynecol Reprod Biol 122(2):206–212

    PubMed  Google Scholar 

  5. Escobar-Morreale HF, Samino S, Insenser M et al (2012) Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC-MS. Clin Chem 58(6):999–1009

    CAS  PubMed  Google Scholar 

  6. Legro RS (2012) Obesity and PCOS: implications for diagnosis and treatment. Semin Reprod Med 30(6):496–506

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu Z, Gui Z, Li L, Li B, Su J, Zhao X, He X, Li W, Yang L, Wang J, Ji G (2012) Expression and purification of gp41-gp36 fusion protein and application in serological screening assay of HIV-1 and HIV-2. Afr J Microbiol Res 6:6295–6299. https://doi.org/10.5897/AJMR12.1075

    Article  Google Scholar 

  8. You R, Gui Z, Xu Z, Shirtliff ME, Yu G, Zhao X, Shi L, Li B, Su J, Li L (2012) Methicillin-resistance Staphylococcus aureus detection by an improved rapid PCR assay. Afr J Microbiol Res 6:7131–7133. https://doi.org/10.5897/AJMR12.708

    Article  CAS  Google Scholar 

  9. Diamantikandarakis E, Christakou C, Marinakis E et al (2012) Phenotypes and enviromental factors: their influence in PCOS. Curr Pharm Des 18(3):270–282

    CAS  Google Scholar 

  10. Zhao S, Chu Y, Zhang C et al (2007) Diet-induced central obesity and insulin resistance in rabbits. J Anim Physiol Anim Nutr 92(1):105–111

    Google Scholar 

  11. Guo Y, Qi Y, Yang X et al (2016) Association between polycystic ovary syndrome and gut microbiota. PLoS ONE 11:4

    Google Scholar 

  12. Flint HJ, Bayer EA, Rincon MT et al (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131

    CAS  PubMed  Google Scholar 

  13. Liu J, Li L, Zhou L, Li B, Xu Z (2018) Effect of ultrasonic field on the enzyme activities and ion balance of potential pathogen Saccharomyces cerevisiae. Microb Pathog 119:216–220. https://doi.org/10.1016/j.micpath.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Lu Z, Li L, Li B, Zhang X, Zhang X, Xu Z (2018) Physical relation and mechanism of ultrasonic bactericidal activity on pathogenic E. coli with WPI. Microb Pathog 117:73–79. https://doi.org/10.1016/j.micpath.2018.02.007

    Article  PubMed  Google Scholar 

  15. Liu L, Xu R, Li L, Li B, Zhang X, Zhang X, Xu Z (2018) Correlation and in vitro mechanism of bactericidal activity on E. coli with whey protein isolate during ultrasonic treatment. Microb Pathog 115:154–158. https://doi.org/10.1016/j.micpath.2017.12.062

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, Shirtliff ME (2017) The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium. Microbiol Open. https://doi.org/10.1002/mbo3.506

    Article  Google Scholar 

  17. Liu J, Li L, Zhou L, Li B, Xu Z (2017) Effect of ultrasound treatment conditions on Saccharomyces cerecisiae by response surface methodology. Microb Pathog 111:497–502. https://doi.org/10.1016/j.micpath.2017.09.017

    Article  PubMed  Google Scholar 

  18. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    CAS  PubMed  Google Scholar 

  19. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    CAS  PubMed  Google Scholar 

  20. Larsen N, Vogensen FK, Den Berg FV et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:2

    Google Scholar 

  21. Xu Z, Li L, Chu J, Peters BM, Harris ML, Li B, Shi L, Shirliff ME (2012) Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res Int 47:166–173. https://doi.org/10.1016/j.foodres.2011.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang L, Li Y, Chu J, Xu Z, Zhong Q (2012) Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol Biol Rep 39:445–449. https://doi.org/10.1007/s11033-011-0757-7

    Article  CAS  PubMed  Google Scholar 

  23. Zhao X, Li W, Yanmei L, Xu Z, Li L, He X, Liu Y, Wang J, Yang L (2011) Development and application of a loop-mediated isothermal amplification method on rapid detection of Pseudomonas aeruginosa strains. World J Microbiol Biotechnol 27:181–184. https://doi.org/10.1007/s11274-010-0429-0

    Article  CAS  Google Scholar 

  24. Wang L, Zhao X, Chu J, Li Y, Li Y, Li C, Xu Z, Zhong Q (2011) Application of an improved loop-mediated isothermal amplification detection of Vibrio parahaemolyticus from various seafood samples. Afr J Microbiol Res 5:5765–5771. https://doi.org/10.5897/AJMR11.1237

    Article  CAS  Google Scholar 

  25. Zhao X, Li Y, Wang L, You L, Xu Z, Li L, He X, Liu Y, Wang J, Yang L (2010) Development and application of a loop-mediated isothermal amplification method on rapid detection Escherichia coli O157 strains from food samples. Mol Biol Rep 37:2183–2188. https://doi.org/10.1007/s11033-009-9700-6

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, Li Y, Chu J, Wang L, Shirtliff ME, He X, Liu Y, Wang J, Xu Z, Li L (2010) Rapid detection of Vibrio parahaemolyticus strains and virulent factors by loop-mediated isothermal amplification assays. Food Sci Biotechnol 19:1191–1197. https://doi.org/10.1007/s10068-010-0170-3

    Article  Google Scholar 

  27. Zhao X, Wang L, Chu J, Li Y, Li Y, Xu Z, Li L, Shirtliff ME, He X, Liu Y, Wang J, Yang L (2009) Development and application of a rapid and simple loop-mediated isothermal amplification method for food-borne Salmonella detection. Food Sci Biotechnol 19:1655–1659. https://doi.org/10.1007/s10068-010-0234-4

    Article  Google Scholar 

  28. Louise M, Stefan C, Agneta H (2007) A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology 8:8

    Google Scholar 

  29. Shi D, Vine DF (2012) Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk. Fertil Steril 98:185–193

    PubMed  Google Scholar 

  30. Aleshin AE, Zeng C, Bourenkov G et al (1998) The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure 6(1):39–50

    CAS  PubMed  Google Scholar 

  31. Miao J, Lin S, Soteyome T, Peters BM, Li Y, Chen H, Su J, Li L, Li B, Xu Z, Shirtliff ME, Harro JM (2019) Biofilm formation of Staphylococcus aureus under food heat processing conditions-first report on CML production within biofilm. Sci Rep 9:1313. https://doi.org/10.1038/s41598-018-35558-2

    Article  CAS  Google Scholar 

  32. Jia X, Hua J, Liu L, Xu Z, Li Y (2018) Phenotypic characterization of pathogenic Cronobacter spp. strains. Microb Pathog 121:232–237. https://doi.org/10.1016/j.micpath.2018.05.033

    Article  CAS  PubMed  Google Scholar 

  33. Bao X, Yang L, Chen L, Li B, Li L, Li Y, Xu Z (2017) Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb Pathog 110:359–364. https://doi.org/10.1016/j.micpath.2017.07.022

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, Shirtliff ME (2017) Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb Pathog 110:257–261. https://doi.org/10.1016/j.micpath.2017.06.044

    Article  CAS  PubMed  Google Scholar 

  35. Bao X, Yang L, Chen L, Li B, Li L, Li Y, Xu Z (2017) Analysis on pathogenic and virulent characteristics of the Cronobacter sakazakii strain BAA-894 by whole genome sequencing and its demonstration in basic biology science. Microb Pathog 109:280–286. https://doi.org/10.1016/j.micpath.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Li L, Li B, Peters BM, Xu Z, Shirtliff ME (2017) First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Microb Pathog 107:219–224. https://doi.org/10.1016/j.micpath.2017.03.043

    Article  PubMed  Google Scholar 

  37. Xie J, Peters BM, Li B, Li L, Yu G, Xu Z, Shirtliff ME (2017) Clinical features and antimicrobial resistance profiles of important Enterobacteriaceae pathogens in Guangzhou representative of Southern China, 2001–2015. Microb Pathog 107:206–211. https://doi.org/10.1016/j.micpath.2017.03.038

    Article  CAS  PubMed  Google Scholar 

  38. Bao X, Jia X, Chen L, Peters BM, Lin C-W, Chen DQ, Li L, Li B, Li Y, Xu Z, Shirtliff M (2017) Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii. Microb Pathog 106:16–19

    CAS  PubMed  Google Scholar 

  39. Xu Z, Xie J, Peters BM, Li B, Li L, Yu G, Shirtliff ME (2017) Longitudinal surveillance on antibiogram of important gram-positive pathogens in Southern China, 2001 to 2015. Microb Pathog 103:80–86. https://doi.org/10.1016/j.micpath.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  40. Yu G, Wen W, Peters BM, Liu J, Ye C, Che Y, Liu J, Cao K, Xu Z, Shirtliff ME (2016) First report of novel genetic array aacA4-bla(IMP-25)-oxa30-catB3 and identification of novel metallo-beta-lactamase gene bla(IMP25): a retrospective study of antibiotic resistance surveillance on Psuedomonas aeruginosa in Guangzhou of South China, 2003–2007. Microb Pathog 95:62–67. https://doi.org/10.1016/j.micpath.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  41. Xu Z, Shi L, Alam MJ, Li L, Yamasaki S (2008) Integron-bearing methicillin-resistant coagulase-negative staphylococci in South China, 2001–2004. FEMS Microbiol Lett 278:223–230. https://doi.org/10.1111/j.1574-6968.2007.00994.x

    Article  CAS  PubMed  Google Scholar 

  42. Deng Y, Liu J, Li L, Fang H, Tu J, Li B, Liu J, Li H, Xu Z (2015) Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011–2018. Int J Food Microbiol 20:96–101. https://doi.org/10.1016/j.ijfoodmicro.2015.04.046

    Article  CAS  Google Scholar 

  43. Zhong N, Gui Z, Liu X, Huang J, Hu K, Gao X, Zhang X, Xu Z, Su J, Li B (2013) Solvent-free enzymatic synthesis of 1, 3-diacylglycerols by direct esterification of glycerol with saturated fatty acids. Lipids Health Dis 12:2–7. https://doi.org/10.1186/1476-511X-12-65

    Article  CAS  Google Scholar 

  44. Barber TM, Mccarthy MI, Wass J et al (2006) Obesity and polycystic ovary syndrome. Clin Endocrinol 65(2):137–145

    CAS  Google Scholar 

  45. Yildirim B, Sabir N, Kaleli B (2003) Relation of intra-abdominal fat distribution to metabolic disorders in nonobese patients with polycystic ovary syndrome. Fertil Steril 79(6):1358–1364

    PubMed  Google Scholar 

  46. Xu Z, Li L, Shirliff ME, Peters BM, Li B, Peng Y, Alam MJ, Yamasaki S, Shi L (2011) Resistance class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in southern China, 2001–2006. Clin Microbiol Infect 17:714–718. https://doi.org/10.1111/j.1469-0691.2010.03379.x

    Article  CAS  PubMed  Google Scholar 

  47. Xu Z, Li L, Shi L, Shirliff ME (2011) Class 1 integron in staphylococci. Mol Biol Rep 38:5261–5279. https://doi.org/10.1007/s11033-011-0676-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Velloso LA, Folli F, Saad MJ (2015) TLR4 at the crossroads of nutrients, gut microbiota, and metabolic inflammation. Endocr Rev 36(3):245–271

    CAS  PubMed  Google Scholar 

  49. Hurley BF, Seals DR, Hagberg JM et al (1984) High-density—lipoprotein cholesterol in bodybuilders vs powerlifters: negative effects of androgen use. JAMA 252(4):507–513

    CAS  PubMed  Google Scholar 

  50. Xu Z, Li L, Zhao X, Chu J, Li B, Shi L, Su J, Shirtliff ME (2011) Development and application of a novel multiplex polymerase chain reaction (PCR) assay for rapid detection of various types of staphylococci strains. Afr J Microbiol Res 5:1869–1873. https://doi.org/10.5897/AJMR11.437

    Article  CAS  Google Scholar 

  51. Xu Z, Li L, Shirliff ME, Peters BM, Peng Y, Alam MJ, Yamasaki S, Shi L (2010) First report of class 2 integron in clinical Enterococcus faecalis and class 1 integron in Enterococcus faecium in South China. Diagn Microbiol Infect Dis 68:315–317. https://doi.org/10.1016/j.diagmicrobio.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  52. Yanai H, Katsuyama H, Hamasaki H et al (2015) Effects of dietary fat Intake on HDL metabolism. J Clin Med Res 7(3):145–149

    PubMed  Google Scholar 

  53. Tremellen K, Pearce K (2012) Dysbiosis of gut microbiota (DOGMA): a novel theory for the development of polycystic ovarian syndrome. Med Hypotheses 79(1):104–112

    PubMed  Google Scholar 

  54. Xu Z, Li L, Shirliff ME, Alam MJ, Yamasaki S, Shi L (2009) Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in Southern China. J Clin Microbiol 47:230–234. https://doi.org/10.1128/JCM.02027-08

    Article  CAS  PubMed  Google Scholar 

  55. Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence specific variations in human microbiome composition and diversity. Front Microbiol 8:1162

    PubMed  PubMed Central  Google Scholar 

  56. Zinöcker MK, Lindseth IA (2018) The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 10:E365

    PubMed  Google Scholar 

  57. Zhao X, Yu Z, Xu Z (2018) Study the features of 57 confirmed CRISPR loci in 38 strains of Staphylococcus aureus. Front Microbiol 9:1591. https://doi.org/10.3389/fmicb.2018.01591

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhao X, Li M, Xu Z (2018) Detection of foodborne pathogens by surface enhanced raman spectroscopy. Front Microbiol 9:1236. https://doi.org/10.3389/fmicb.2018.01236

    Article  PubMed  PubMed Central  Google Scholar 

  59. Miao J, Wang W, Xu W, Su J, Li L, Li B, Zhang X, Xu Z (2018) The fingerprint mapping and genotyping systems application on methicillin-resistant Staphylococcus aureus. Microb Pathog 125:246–251. https://doi.org/10.1016/j.micpath.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  60. Liu J, Deng Y, Peters BM, Li L, Li B, Chen L, Xu Z, Shirtliff ME (2016) Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans. Sci Rep 6:36753. https://doi.org/10.1038/srep36753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin S, Li L, Li B, Zhao X, Lin C, Deng Y, Xu Z (2016) Development and evaluation of quantitative detection of N-epsilon-carboxymethyl-lysine in Staphylococcus aureus biofilm by LC-MS method. Basic Clin Pharmacol Toxicol 118:33

    Google Scholar 

  62. Miao J, Peters BM, Li L, Li B, Zhao X, Xu Z, Shirtliff ME (2016) Evaluation of ERIC-PCR for fingerprinting methicillin-resistant Staphylococcus aureus strains. Basic Clin Pharmacol Toxicol 118(S1):33

    Google Scholar 

  63. Xu Z, Hou Y, Qin D, Liu X, Li B, Li L, Miao J, Cheng X, Liu Q, Chen D, Yu G, Shirtliff ME (2016) Evaluation of current methodologies for rapid identification of methicillin-resistant Staphylococcus aureus strains. Basic Clin Pharmacol Toxicol 118:33

    Google Scholar 

  64. Liu J, Li L, Peters BM, Li B, Deng Y, Xu Z, Shirtliff ME (2016) Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria. FEMS Microbiol Lett 363:18. https://doi.org/10.1093/femsle/fnw201

    Article  CAS  Google Scholar 

  65. Xu J, Bjursell MK, Himrod J et al (2003) A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299(5615):2074–2076

    CAS  PubMed  Google Scholar 

  66. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    PubMed  Google Scholar 

  67. Torres PJ, Siakowska M, Banaszewska B et al (2018) Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab 103(4):1502–1511

    PubMed  PubMed Central  Google Scholar 

  68. Shin J-H, Park YH, Sim M et al (2019) Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol 170:192–201

    CAS  PubMed  Google Scholar 

  69. Andoh A, Nishida A, Takahashi K et al (2016) Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr 59(1):65–70

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreno-Indias I, Sanchez-Alcoholado L, Sanchez-Garrido MA et al (4888e) Neonatal androgen exposure causes persistent gut microbiota dysbiosis related to metabolic disease in adult female rats. Endocrinology 157:4888e98

    Google Scholar 

  71. Lahti L, Salonen A, Kekkonen RA et al (2013) Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. Peer J 1(4):e32

    PubMed  PubMed Central  Google Scholar 

  72. Chen D, Yang Z, Chen X et al (2014) The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complement Altern Med 14(1):386–386

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kelly TN, Bazzano LA, Ajami NJ et al (2016) Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res 119(8):956–964

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Saulnier DM, Riehle K, Mistretta TA et al (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141(5):1782–1791

    CAS  PubMed  Google Scholar 

  75. Zeng B, Lai Z, Sun L et al (2019) Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol 170(1):43–52

    CAS  PubMed  Google Scholar 

  76. Li J, Sung CY, Lee NP et al (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 113(9):E1306–E1315

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiro N, Azusa Y, Palermo-Conde LA et al (2017) Impact of westernized diet on gut microbiota in children on Leyte Island. Front Microbiol 8:197

    Google Scholar 

  78. Xu Z, Li L, Alam MJ, Zhang L, Yamasaki S, Shi L (2008) First confirmation of integron-bearing methicillin-resistant Staphylococcus aureus. Curr Microbiol 57:264–268. https://doi.org/10.1007/s00284-008-9187-8

    Article  CAS  PubMed  Google Scholar 

  79. Xu Z, Shi L, Zhang C, Zhang L, Li X, Cao Y, Li L, Yamasaki S (2007) Nosocomial infection caused by class 1 integron-carrying Staphylococcus aureus in a hospital in South China. Clin Microbiol Infect 13:980–984. https://doi.org/10.1111/j.1469-0691.2007.01782.x

    Article  CAS  PubMed  Google Scholar 

  80. Nakano V, Piazza RM, Cianciarullo AM et al (2008) Adherence and invasion of Bacteroidales isolated from the human intestinal tract. Clin Microbiol Infect 14(10):955–963

    CAS  PubMed  Google Scholar 

  81. Yu S, Xie Y, Qiu Y et al (2019) Moderate alteration to gut microbiota brought by colorectal adenoma resection. J Gastroenterol Hepatol 34(10):1758–1765

    CAS  PubMed  Google Scholar 

  82. Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, Shirtliff ME, Xu Z, Peters BM (2018) Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci Rep 8:11446. https://doi.org/10.1038/s41598-018-28949-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu J, Deng Y, Soteyome T, Li Y, Su J, Li L, Li B, Shirtliff ME, Xu Z, Peters BM (2018) Induction and recovery of the viable but nonculturable state of hop-resistance Lactobacillus brevis. Front Microbiol 9:2076. https://doi.org/10.3389/fmicb.2018.02076

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lin S, Yang L, Chen G, Li B, Chen D, Li L, Xu Z (2017) Pathogenic features and characteristics of food borne pathogens biofilm: biomass, viability and matrix. Microb Pathog 111:285–291. https://doi.org/10.1016/j.micpath.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Ji L, Peters BM, Li L, Li B, Duan J, Jin H, Zhang X, Xu Z, Shirtliff ME (2016) Whole genome sequence of two Bacillus cereus strains isolated from soy sauce residues. Basic Clin Pharmacol Toxicol 118:34

    Google Scholar 

  86. Daniel H, Gholami AM, Berry D et al (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8(2):295–308

    CAS  PubMed  Google Scholar 

  87. Vincent C, Stephens DA, Loo VG et al (2013) Reductions in intestinal Clostridiales precede the development of nosocomial Clostridium difficile infection. mBio 1(1):18

    Google Scholar 

  88. Mosca A, Leclerc M, Hugot JP et al (2016) Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol 7:455

    PubMed  PubMed Central  Google Scholar 

  89. Lindheim L, Bashir M, Münzker J et al (2017) Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS ONE 12(1):e0168390

    PubMed  PubMed Central  Google Scholar 

  90. Liu R, Zhang C, Shi Y et al (2017) Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol 8:324

    PubMed  PubMed Central  Google Scholar 

  91. Yurkovetskiy L, Burrows MP, Khan AA et al (2013) Gender bias in autoimmunity is influenced by microbiota. Immunity 39(2):400–412

    CAS  PubMed  Google Scholar 

  92. Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723

    PubMed  PubMed Central  Google Scholar 

  93. Tilman D, Reich PB, Knops JM et al (2001) Diversity and productivity in a long-term grassland experiment. Science 294(5543):843–845

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the research grants from the Natural Science Foundation of Chinese (No. 81704107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Li.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of our manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Yu, J., Liang, C. et al. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng 44, 953–964 (2021). https://doi.org/10.1007/s00449-020-02320-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02320-w

Keywords

Navigation