Skip to main content
Log in

Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Taxol is the most profitable drug ever developed in cancer chemotherapy; however, the market demand for the drug greatly exceeds the supply that can be sustained from its natural sources. In this study, Aspergillus fumigatus TXD105–GM6 and Alternaria tenuissima TER995–GM3 were immobilized in calcium alginate beads and used for the production of taxol in shake flask cultures. In an effort to increase the taxol magnitude, immobilization conditions were optimized by response surface methodology program (RSM). The optimum levels of alginate concentration, calcium chloride concentration, and mycelium fresh weight were 5%, 4%, and 15% (w/v), respectively. Under these conditions, taxol production by the respective fungal strains was intensified to 901.94 μg L−1 and 529.01 μg L−1. Moreover, the immobilized mycelia of both strains were successfully used in the repeated production of taxol for six different fermentation cycles. The total taxol concentration obtained in all cycles reached 4540.14 μg L−1 by TXD105–GM6 and 2450.27 μg L−1 by TER995–GM3 strain, which represents 7.85- and 6.31-fold increase, as compared to their initial titers. This is the first report on the production of taxol in semi-continuous fermentation. To our knowledge, the taxol productivity achieved in this study is the highest reported by academic laboratories for microbial cultures which indicates the future possibility to reduce the cost of taxol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Zhang G, Pfeifer BA (2014) Current and emerging options for taxol production. Springer International Publishing, Cham

    Book  Google Scholar 

  2. Goodman J, Walsh V (2001) The story of taxol: nature and politics in the pursuit of an anti-cancer drug. Cambridge University Press, Cambridge

    Google Scholar 

  3. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231

    Article  CAS  Google Scholar 

  4. Woo DD, Miao SY, Pelayo JC, Woolf AS (1994) Taxol inhibits progression of congenital polycystic kidney disease. Nature 368:750–753

    Article  CAS  Google Scholar 

  5. Herdeg C, Oberhoff M, Baumbach A, Blattner A, Axel DI, Schröder S, Heinle H, Karsch KR (2000) Local taxol delivery for the prevention of restenosis: biological effects and efficacy in vivo. J Am Coll Cardiol 35:1969–1976

    Article  CAS  Google Scholar 

  6. Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  CAS  Google Scholar 

  7. Patel RN (1998) Tour de taxol: biocatalysis for semisynthesis. Ann Rev Microbiol 52:361–395

    Article  CAS  Google Scholar 

  8. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of taxol and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  CAS  Google Scholar 

  9. El-Sayed ER, Ahmed AS, Al-Hagar OEA (2020) Agro-industrial wastes for production of paclitaxel by irradiated Aspergillus fumigatus under solid-state fermentation. J Appl Microbiol. https://doi.org/10.1111/jam.14574

    Article  PubMed  Google Scholar 

  10. Ji Y, Bi J, Yan B, Zhu X (2006) Taxol-producing fungi: a new approach to industrial production of taxol. Chin J Biotechnol 22:1–6

    Article  Google Scholar 

  11. Ismaiel AA, Ahmed AS, Hassan IA, El-Sayed ER, Karam El-Din AA (2017) Production of taxol with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol 101:5831–5846

    Article  CAS  Google Scholar 

  12. El-Sayed ER, Ismaiel AA, Ahmed AS, Hassan IA, Karam El-Din AA (2019) Bioprocess optimization using response surface methodology for production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima: enhanced production by ultraviolet and gamma irradiation. Biocatal Agric Biotechnol 18:100966

    Google Scholar 

  13. Ismaiel AA, Ahmed AS, El-Sayed ER (2015) Immobilization technique for enhanced production of the immunosuppressant mycophenolic acid by ultraviolet and gamma-irradiated Penicillium roqueforti. J Appl Microbiol 119:112–126

    Article  CAS  Google Scholar 

  14. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397

    Article  CAS  Google Scholar 

  15. Singh R, Pandey D, Devi N, Chand D (2018) Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6. Bioprocess Biosyst Eng 41:1225–1232

    Article  CAS  Google Scholar 

  16. Inyai C, Boonsnongcheep P, Komaikul J, Sritularak B, Tanaka R, Putalun W (2019) Alginate immobilization of Morus alba L. cell suspension cultures improved the accumulation and secretion of stilbenoids. Bioprocess Biosyst Eng 42:131–141

    Article  CAS  Google Scholar 

  17. Lian W, Wang W, Tan CP, Wang J, Wang Y (2019) Immobilized Talaromyces thermophilus lipase as an efficient catalyst for the production of LML-type structured lipids. Bioprocess Biosyst Eng 42:321–329

    Article  CAS  Google Scholar 

  18. El-Sayed ER, Ahmed AS, Hassan IA, Ismaiel AA, Karam El-Din AA (2019) Strain improvement and immobilization technique for enhanced production of the anticancer drug paclitaxel by Aspergillus fumigatus and Alternaria tenuissima. Appl Microbiol Biotechnol 103:8923–8935

    Article  CAS  Google Scholar 

  19. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  Google Scholar 

  20. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440

    Article  CAS  Google Scholar 

  21. Cardellina JH (1991) HPLC separation of taxol and cephalomannine. J Liq Chromatogr 14:659–665

    Article  CAS  Google Scholar 

  22. Deng BW, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143

    Article  CAS  Google Scholar 

  23. Kennedy JF, Cabral JMS (1983) Immobilized living cells and their applications. Appl Biochem Bioeng 4:189–280

    Article  CAS  Google Scholar 

  24. Sekar C, Balaraman K (1998) Immobilization of the fungus, Tolypocladium sp. for the production of cyclosporin A. Bioprocess Eng 19:281–283

    CAS  Google Scholar 

  25. Sallam LAR, El-Refai AMH, Hamdi AHA, El-Minofi HA, Abd-Elsalam IS (2005) Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreus. J Gen Appl Microbiol 51:143–149

    Article  CAS  Google Scholar 

  26. Survase SA, Annapure US, Singhal RS (2010) Gellan gum as immobilization matrix for production of cyclosporin A. J Microbiol Biotechnol 20:1086–1091

    Article  CAS  Google Scholar 

  27. Bentebibel S, Moyano E, Palazo J, Rosa M, Cusido M, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on taxol and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  CAS  Google Scholar 

  28. Hara H, Arita T, Tachibana S, Itoh K (2008) Taxol production by immobilized cell suspension cultures of Taxus cuspidate var. nana. Biotechnology 7:557–562

    Article  CAS  Google Scholar 

  29. Kopp B, Rehm H (1983) Alkaloid production by immobilized mycelia of Claviceps purpurea. Eur J Appl Microbiol Biotechnol 18:257–263

    Article  CAS  Google Scholar 

  30. Xu Z, Yang S (2007) Production of mycophenolic acid by Penicillium brevicompactum immobilized in a rotating fibrous-bed bioreactor. Enzyme Microb Technol 40:623–628

    Article  CAS  Google Scholar 

  31. Zaiyou JM, Li MB, Xiqiao HM (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine 96:e7406. https://doi.org/10.1097/MD.0000000000007406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gu Y, Wang Y, Ma X, Wang C, Yue G, Zhang Y, Zhang Y, Li S, Ling S, Liu X, Wen X, Cao S, Huang X, Deng J, Zuo Z, Yu S, Shen L, Wu R (2015) Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca). Appl Biochem Biotechnol 175:155–165

    Article  CAS  Google Scholar 

  33. Chen JH, Liu JJ, Zang GG, Li YJ, Zhao LN (2004) Screening of taxol-producing endophytic fungi and regulation of fermentation conditions. J Cent South Univ Nat Sci 35:65–69

    CAS  Google Scholar 

  34. Sun DF, Ran XQ, Wang JF (2008) Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta Microbiol Sin 48:589–595

    CAS  Google Scholar 

  35. Li D, Fu D, Zhang Y, Ma X, Gao L, Wang X, Zhou D, Zhao K (2017) Isolation, purification, and identification of taxol and related taxanes from taxol-producing fungus Aspergillus niger subsp. taxi. J Microbiol Biotechnol 27:1379–1385

    PubMed  Google Scholar 

  36. Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293:155–159

    Article  CAS  Google Scholar 

  37. Zhao K, Ping WX, Li Q, Hao S, Zhao L, Gao T, Zhou D (2009) Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J Appl Microbiol 107:1202–1207

    Article  CAS  Google Scholar 

  38. Gill H, Vasundhara M (2019) Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J Microbiol Biotechnol 35:74

    Article  Google Scholar 

  39. Tian R, Yang Q, Zhou G, Tan J, Zhang L, Fang C (2006) Taxonomic study on a taxol producing fungus isolated from bark of Taxus chinensis var. mairei. Wuhan Bot Res 24:541–545

    CAS  Google Scholar 

  40. Chun GT, Agathos SN (1989) Immobilization of Tolypocladium inflatum spores into porous celite beads for cyclosporin A production. J Biotechnol 9:237–254

    Article  CAS  Google Scholar 

  41. Urkut Z, Dagbagli S, Goksungur Y (2007) Optimization of pullulan production using Ca-alginate immobilized Aureobasidium pullulans by response surface methodology. J Chem Technol Biotechnol 82:837–846

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Amira G. Zaki, Lecturer of Microbiology, Plant Research Department, Nuclear Research Center, Atomic Energy Authority of Egypt for her sincere help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed R. El-Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, ES.R., Ahmed, A.S., Hassan, I.A. et al. Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess Biosyst Eng 43, 997–1008 (2020). https://doi.org/10.1007/s00449-020-02295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02295-8

Keywords

Navigation