Skip to main content
Log in

A newly isolated and rapid denitrifier Pseudomonas citronellolis WXP-4: difference in N2O emissions under aerobic and anaerobic conditions

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel and efficient facultative anaerobic denitrifying bacterium was isolated and identified as Pseudomonas citronellolis WXP-4. The strain WXP-4 could achieve 100% nitrate and nitrite removal efficiency utilizing sodium succinate as a carbon source, C/N ratio 7, pH 7.0, and temperature 40 °C under both aerobic and anaerobic conditions. The bacterium could tolerate a wide range of NO3–N concentrations from 100 to 1000 mg/L with a maximum nitrogen removal rate of 32.05 mg/(L h). An interesting phenomenon was found that no N2O emission occurred during the denitrifying process under anaerobic conditions, while there was 0.06 mg/L under aerobic conditions. This phenomenon had been confirmed by fluorescence quantitative PCR and the results showed that the relative abundance of nosZ gene increased by 17-fold based on the ratio of anaerobic to aerobic, and thus, nosZ gene could encode more nitrous oxide reductase to accelerate the conversion of N2O under anaerobic conditions. Moreover, the narG, nirK, and norB genes were also identified in the denitrifying pathway of the strain WXP-4. This investigation has demonstrated enormous potential for the future application in wastewater treatment systems.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sumino T, Isaka K, Ikuta H, Saiki Y, Yokota T (2006) Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. J Biosci Bioeng 102:346–351

    CAS  PubMed  Google Scholar 

  2. Ashok V, Hait S (2015) Remediation of nitrate-contaminated water by solid-phase denitrification process-a review. Environ Sci Pollut Res Int 22:8075–8093

    CAS  PubMed  Google Scholar 

  3. Zhang X, Xu Z, Sun X, Dong W, Ballantine D (2013) Nitrate in shallow groundwater in typical agricultural and forest ecosystems in china, 2004–2010. J Environ Sci-China 25:1007–1014

    CAS  PubMed  Google Scholar 

  4. Smith KA, Mosier AR, Crutzen PJ, Winiwarter W, Thomson AJ, Baggs E, Richardson DJ (2012) The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Philos T R Soc B 367:1169–1174

    CAS  Google Scholar 

  5. Laura A, Carlos B, Alba B, Aurelio H, José B (2014) Transferable denitrification capability of Thermus thermophilus. Appl Environ Microbiol 80:19–28

    Google Scholar 

  6. Wang J, Chu L (2016) Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol Adv 34:1103–1112

    CAS  PubMed  Google Scholar 

  7. Srinandan CS, Shah M, Patel B, Nerurkar AS (2011) Assessment of denitrifying bacterial composition in activated sludge. Bioresour Technol 102:9481–9489

    CAS  PubMed  Google Scholar 

  8. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW (2011) Pseudomonas genomes: diverse and adaptable. Fems Microbiol Rev 35:652–680

    CAS  PubMed  Google Scholar 

  9. Zhang QL, Liu Y, Ai GM, Miao LL, Zheng HY, Liu ZP (2012) The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour Technol 108:35–44

    CAS  PubMed  Google Scholar 

  10. Zheng HY, Liu Y, Gao XY, Ai GM, Miao LL, Liu ZP (2012) Characterization of a marine origin aerobic nitrifying-denitrifying bacterium. J Biosci Bioeng 114:33–37

    CAS  PubMed  Google Scholar 

  11. Padhi SK, Tripathy S, Sen R, Mahapatra AS, Mohanty S, Maiti NK (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int Biodeter Biodegr 78:67–73

    CAS  Google Scholar 

  12. Zhang S, Zhang Y, Zhou JT, Chen MX, Wang XJ (2013) Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresour Technol 148:144–148

    PubMed  Google Scholar 

  13. Ren YX, Yang L, Liang X (2014) The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresour Technol 171:1–9

    CAS  PubMed  Google Scholar 

  14. Chen J, Gu SY, Hao HH, Chen JM (2016) Characteristics and metabolic pathway of Alcaligenes sp. TB for simultaneous heterotrophic nitrification-aerobic denitrification. Appl Microbiol Biotechnol 100:9787–9794

    CAS  PubMed  Google Scholar 

  15. He T, Li Z, Sun Q, Xu Y, Ye Q (2016) Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresour Technol 200:493–499

    CAS  PubMed  Google Scholar 

  16. Medhi K, Singhal A, Chauhan DK, Thakur IS (2017) Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1. Bioresour Technol 242:334–343

    CAS  PubMed  Google Scholar 

  17. Zhang H, Zhao Z, Chen S, Kang P, Wang Y, Feng J, Jia J, Yan M, Wang Y, Xu L (2018) Paracoccus versutus KS293 adaptation to aerobic and anaerobic denitrification: insights from nitrogen removal, functional gene abundance, and proteomic profiling analysis. Bioresour Technol 260:321–328

    CAS  PubMed  Google Scholar 

  18. Giannopoulos G, Sullivan MJ, Hartop K, Rowley G, Gates A, Watmough NJ, Richardson DJ (2017) Tuning the modular Paracoccus denitrificans respirome to adapt from aerobic respiration to anaerobic denitrification. Environ Microbiol 19:4953–4964

    CAS  PubMed  Google Scholar 

  19. Ji B, Yang K, Wang H, Zhou J, Zhang H (2015) Aerobic denitrification by Pseudomonas stutzeri C3 incapable of heterotrophic nitrification. Bioproc Biosyst Eng 38:407–409

    CAS  Google Scholar 

  20. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    CAS  PubMed  Google Scholar 

  21. Baumann B, Snozzi M, Zehnder AJ, Van Der Meer JR (1996) Dynamics of denitrification activity of paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178:4367–4374

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicholas M, Elizabeth MB, Dr P, Lars B (2010) Production of NO, N2O and N2 by extracted soil bacteria, regulation by NO2- and O2 concentrations. FEMS Microbiol Ecol 65:102–112

    Google Scholar 

  23. Naoki T, Catalan-Sakairi MAB, Yasushi S, Isao K, Zhemin Z, Hirofumi S (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69:3152–3157

    Google Scholar 

  24. APHA (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  25. Lei Y, Wang Y, Liu H, Xi C, Song L (2016) A novel heterotrophic nitrifying and aerobic denitrifying bacterium, Zobellella taiwanensis DN-7, can remove high-strength ammonium. Appl Microbiol Biotechnol 100:4219–4229

    CAS  PubMed  Google Scholar 

  26. Sun ZY, Lv YK, Liu YX, Ren RP (2016) Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp S1. Bioresour Technol 220:142–150

    CAS  PubMed  Google Scholar 

  27. Yang L, Ren YX, Zhao SQ, Liang X, Wang JP (2015) Isolation and characterization of three heterotrophic nitrifying-aerobic denitrifying bacteria from a sequencing batch reactor. Ann Microbiol 66:737–747

    Google Scholar 

  28. Zheng ZJ, Zhang DY, Li WG, Qin W, Huang XF, Lv LY (2018) Substrates removal and growth kinetic characteristics of a heterotrophic nitrifying-aerobic denitrifying bacterium, Acinetobacter harbinensis HITLi7(T) at 2 °C. Bioresour Technol 259:286–293

    CAS  PubMed  Google Scholar 

  29. Cordas CM, Duarte AG, Moura JJ, Moura I (2013) Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism. Biochim Biophys Acta Bioenerg 1827:233–238

    CAS  Google Scholar 

  30. Liu Y, Ai GM, Miao LL, Liu ZP (2016) Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresour Technol 206:9–15

    CAS  PubMed  Google Scholar 

  31. Torres MJ, Simon J, Rowley G, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ (2016) Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv Microb Physiol 68:353–432

    CAS  PubMed  Google Scholar 

  32. Zhao B, An Q, He YL, Guo JS (2012) N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR. Bioresour Technol 116:379–385

    CAS  PubMed  Google Scholar 

  33. Li RP, Zi XL, Wang XF, Zhang X, Gao HF, Hu N (2013) Marinobacter hydrocarbonoclasticusNY-4, a novel denitrifying, moderately halophilic marine bacterium. SpringerPlus 2:346

    PubMed  PubMed Central  Google Scholar 

  34. Ji B, Wang H, Kai Y (2014) Tolerance of an aerobic denitrifier (Pseudomonas stutzeri) to high O2 concentrations. Biotechnol Lett 36:719–722

    CAS  PubMed  Google Scholar 

  35. Ji B, Yang K, Zhu L, Jiang Y, Wang H, Zhou J, Zhang H (2015) Aerobic denitrification: A review of important advances of the last 30 years. Bioproc Biosyst Eng 20:643–651

    CAS  Google Scholar 

  36. Her JJ, Huang JS (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54:45–51

    CAS  Google Scholar 

  37. Li C, Yang J, Wang X, Wang E, Li B, He R, Yuan H (2015) Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Bioresour Technol 182:18–25

    CAS  PubMed  Google Scholar 

  38. Su JF, Shi JX, Huang TL, Ma F (2016) Kinetic analysis of simultaneous denitrification and biomineralization of novel Acinetobacter sp CN86. Mar Pollut Bull 109:87–94

    CAS  PubMed  Google Scholar 

  39. Yang M, Lu D, Qin B, Liu Q, Zhao Y, Liu H, Ma J (2018) Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp M-11. Bioresour Technol 256:366–373

    CAS  PubMed  Google Scholar 

  40. Chen J, Zheng J, Li Y, Hao HH, Chen JM (2015) Characteristics of a novel thermophilic heterotrophic bacterium, Anoxybacillus contaminans HA, for nitrification-aerobic denitrification. Appl Microbiol Biotechnol 99:10695–10702

    CAS  PubMed  Google Scholar 

  41. Bickers PO, Oostrom AJV (2000) Availability for denitrification of organic carbon in meat-processing wastestreams. Bioresour Technol 73:53–58

    CAS  Google Scholar 

  42. Yang X, Wang S, Zhou L (2012) Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresour Technol 104:65–72

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project was supported by the Natural Primary Research & Development Plan of China (2018YFE0120300), the Natural Science Foundation of China (21777142), and the National Key Research and Development Program of China (2016YGC0203701-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Duo, Y., He, J. et al. A newly isolated and rapid denitrifier Pseudomonas citronellolis WXP-4: difference in N2O emissions under aerobic and anaerobic conditions. Bioprocess Biosyst Eng 43, 811–820 (2020). https://doi.org/10.1007/s00449-019-02276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02276-6

Keywords

Navigation