Skip to main content
Log in

Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

β-Galactosidase was produced by the yeast Kluyveromyces lactis NRRL Y1564 in cheese whey supplemented with yeast extract under the optimal temperature of 30 °C, delivering an enzymatic activity of 4418.37 U/gcell after 12 h of process. In order to develop more stable biocatalysts, the enzyme produced by fermentation was immobilized on 2.0% w/v chitosan activated with glutaraldehyde, epichlorohydrin or glycidol, producing a highly active and stable biocatalyst capable of hydrolyzing lactose and producing lactulose simultaneously. The biocatalyst obtained by immobilization in chitosan-glutaraldehyde showed high storage stabilities (100% of its activity when stored at 4 °C 105 days). Regarding the milk lactose hydrolysis by both the soluble and the immobilized enzyme, the conversions obtained were 38.0% and 42.8%, respectively. In this study, by using a biocatalyst deriving from enzyme immobilization to chitosan support, a lactulose production of 17.32 g/L was also possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geiger B, Nguyen H-M, Wenig S, Nguyen HA, Lorenz C, Kittl R, Mathiesen G, Eijsink VG, Haltrich D, Nguyen TH (2016) From by-product to valuable components: efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophiles. Biochem Eng J 116:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mandal S, Puniya M, Sangu KPS, Dagar SS, Singh R, Puniya AK (2012) Dairy by-products: wastes or resources?—the shifting perception after valorization. In: Chandrasekaran M (ed) Valorization of food processing by-products, chap 21, 1st edn. CRC Press, Boca Raton, pp 646–677

    Google Scholar 

  3. Vasileva N, Ivanov Y, Damyanova S, Kostova I, Godjevargova T (2016) Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. Int J Biol Macromol 82:339–346

    Article  CAS  PubMed  Google Scholar 

  4. Aburto C, Castillo C, Cornejo F, Arenas-Salinas M, Vásquez C, Guerrero C, Arenas F, Illanes A, Vera C (2019) β-Galactosidase from Exiguobacterium acetylicum: cloning, expression, purification and characterization. Bioresour Technol 277:211–215

    Article  CAS  PubMed  Google Scholar 

  5. Albuquerque TL, D’Almeida AP, Gomes SDL, Fernandez-Lafuente R, Gonçalves LRB, Rocha MVP (2018) Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock. Process Biochem 73:65–73

    Article  CAS  Google Scholar 

  6. Sitanggang AB, Drews A, Kraume M (2016) Development of a continuous membrane reactor process for enzyme-catalyzed lactulose synthesis. Biochem Eng J 109:65–80

    Article  CAS  Google Scholar 

  7. Song YS, Lee HU, Park C, Kim SW (2013) Batch and continuous synthesis of lactulose from whey lactose by immobilized β-galactosidase. Food Chem 136:689–694

    Article  CAS  PubMed  Google Scholar 

  8. Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR (2016) Biocatalytic approaches using lactulose: end product compared with substrate. Compr Rev Food Sci Food Saf 15(5):878–896

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Yang R, Hua X, Zhao W, Zhang W (2013) Enzymatic production of lactulose and 1-lactulose: current state and perspectives. Appl Microbiol Biotechnol 97(14):6167–6180

    Article  CAS  PubMed  Google Scholar 

  10. Aider M, Halleux D (2007) Isomerization of lactose and lactulose production: review. Trends Food Sci Technol 18(7):356–364

    Article  CAS  Google Scholar 

  11. Panesar PS, Kumari S (2011) Lactulose: production, purification and potential applications. Biotechnol Adv 29(6):940–948

    Article  CAS  PubMed  Google Scholar 

  12. Prazeres AR, Carvalho F, Rivas J, Patanita M, Dôres J (2014) Reuse of pretreated cheese whey wastewater for industrial tomato production (Lycopersicon esculentum Mill.). Agric Water Manag 140:87–95

    Article  Google Scholar 

  13. Kokkiligadda A, Beniwal A, Saini P, Vij S (2016) Utilization of cheese whey using synergistic immobilization of β-galactosidase and Saccharomyces cerevisiae cells in dual matrices. Appl Biochem Biotechnol 179(8):1469–1484

    Article  CAS  PubMed  Google Scholar 

  14. Silva MA, Silva TAL, Salgueiro AA, Campos-Takaki GM, Tambourgi EB (2015) Reuse of whey cheese for lipase production by Candida lipolytica. Chem Eng Trans 43:331–336

    Google Scholar 

  15. Lima AF, Cavalcante KF, de Freitas MFM, Rodrigues THS, Rocha MVP, Gonçalves LRB (2013) Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochem 48(3):443–452

    Article  CAS  Google Scholar 

  16. Bajpai P, Verma N, Neer J, Bajpai PK (1991) Utilization of cheese whey for production of α-amylase enzyme. J Biotechnol 18(3):265–270

    Article  CAS  Google Scholar 

  17. Watanabe T, Shinozaki Y, Suzuki K, Koitabashi M, Yoshida S, Sameshima-Yamashita Y, Kuze Kitamoto H (2014) Production of a biodegradable plastic-degrading enzyme from cheese whey by the phyllosphere yeast Pseudozyma antarctica GB-4(1)W. J Biosci Bioeng 118:183–187

    Article  CAS  PubMed  Google Scholar 

  18. Guo Y, Jiang X, Xiong B, Zhang T, Zeng X, Wu Z, Sun Y, Pan D (2019) Production and transepithelial transportation of angiotensin-I-converting enzyme (ACE)-inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase. J Dairy Sci 102(2):961–975

    Article  CAS  PubMed  Google Scholar 

  19. Castro IPM, Alvim TC, Santana WR, Carvalho VDP, Silveira MA (2011) Efeito da adição de soro de queijo no processo de obtenção de etanol a partir de batata-doce. Cienc Agrotec 35(5):980–986

    Article  Google Scholar 

  20. Nath A, Mondal S, Chakraborty S, Bhattacharjee C, Chowdhury R (2014) Production, purification, characterization, immobilization, and application of β-galactosidase: a review. Asia Pac J Chem Eng 9(3):330–348

    Article  CAS  Google Scholar 

  21. Kamran A, Bibi Z, Aman A, Qader SAU (2016) Lactose hydrolysis approach: isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. Biocatal Agric Biotechnol 5:99–103

    Article  Google Scholar 

  22. Pereira-Rodríguez A (2012) Structural characterization of the β-galactosidase from Kluyveromyces lactis and expression and directed evolution of β-galactosidases with high biotechnological interest. Universidade da Caruña. https://ruc.udc.es/dspace/handle/2183/10048. Accessed 4 Oct 2019

  23. Szczodrak J (2000) Hydrolysis of lactose in whey permeate by immobilized β-galactosidase from Kluyveromyces fragilis. J Mol Catal B Enzym 10(6):631–637

    Article  CAS  Google Scholar 

  24. Sen S, Ray L, Chattopadhyay P (2012) Production, purification, immobilization, and characterization of a thermostable β-galactosidase from Aspergillus alliaceus. Appl Biochem Biotechnol 167(7):1938–1953

    Article  CAS  PubMed  Google Scholar 

  25. Sutendra G, Wong S, Fraser ME, Huber RE (2007) β-Galactosidase (Escherichia coli) has a second catalytically important Mg2+ site. Biochem Biophys Res Commun 352(2):566–570

    Article  CAS  PubMed  Google Scholar 

  26. Craig DB, Hall T, Goltz DM (2000) Escherichia coli β-galactosidase is heterogeneous with respect to a requirement for magnesium. Biometals 13(3):223–229

    Article  CAS  PubMed  Google Scholar 

  27. Wiecek S, Wos H, Horowska-Ziaja S, Flak-Wancerz A, Grzybowska-Chlebowczyk U (2016) Lactose intolerance in children with IgE-dependent allergy to milk proteins. Pediatr Allergy Immunol Pulmonol 29(2):86–90

    Article  Google Scholar 

  28. Husain Q (2010) β galactosidases and their potential applications: a review. Crit Rev Biotechnol 30(1):41–62

    Article  CAS  PubMed  Google Scholar 

  29. Albuquerque TL, Peirce S, Rueda N, Marzocchella A, Gonçalves LRB, Rocha MVP, Fernandez-Lafuente R (2016) Ion exchange of β-galactosidase: the effect of the immobilization pH on enzyme stability. Process Biochem 51(7):875–880

    Article  CAS  Google Scholar 

  30. Wahba MI (2016) Treated calcium pectinate beads for the covalent immobilization of β-d-galactosidase. Int J Biol Macromol 91:877–886

    Article  CAS  PubMed  Google Scholar 

  31. Ansari SA, Satar R, Chibber S, Khan MJ (2013) Enhanced stability of Kluyveromyces lactis β-galactosidase immobilized on glutaraldehyde modified multiwalled carbon nanotubes. J Mol Catal B Enzym 97:258–263

    Article  CAS  Google Scholar 

  32. Garcia-Galán C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353(16):2885–2904

    Article  CAS  Google Scholar 

  33. Guzik U, Hupert-Kocurek K, Wojcieszyńska D, Guzik U, Hupert-Kocurek K (2014) Immobilization as a strategy for improving enzyme properties—application to oxidoreductases. Molecules 19(7):8995–9018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42(15):6437–6474

    Article  CAS  PubMed  Google Scholar 

  35. Inchaurrondo VA, Yantorno OM, Voget CE (1994) Yeast growth and β-galactosidase production during aerobic batch cultures in lactose-limited synthetic medium. Process Biochem 29(1):47–54

    Article  CAS  Google Scholar 

  36. De MFO, Alves FG, Lisboa CR, Martins DDS, André C, Burkert V, Kalil J (2008) Ondas ultrassônicas e pérolas de vidro: um novo método de extração de β-galactosidase para uso em laboratório. Quim Nova 31(2):336–339

    Article  Google Scholar 

  37. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 27(5259):680–685

    Article  Google Scholar 

  38. Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117(2):307–310

    Article  CAS  PubMed  Google Scholar 

  39. Budriene S, Gorochovceva N, Romaskevic T, Yugova L, Miezeliene A, Dienys G, Zubriene A (2005) β-Galactosidase from Penicillium canescens. Properties and immobilization. Open Chem 3(1):95–105

    Article  CAS  Google Scholar 

  40. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  41. Dagbagli S, Goksungur Y (2008) Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electron J Biotechnol 11(4):1–12

    Article  CAS  Google Scholar 

  42. Manera AP, Da Costa OJ, Ribeiro VA, André C, Burkert V, Kalil SJ (2008) Optimization of the culture medium for the production of β-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol Biotechnol 46(1):66–72

    CAS  Google Scholar 

  43. Bansal S, Oberoi HS, Dhillon GS, Patil RT (2008) Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity. Indian J Microbiol 48:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cortés G, Trujillo-Roldán MA, Ramírez OT, Galindo E (2005) Production of β-galactosidase by Kluyveromyces marxianus under oscillating dissolved oxygen tension. Process Biochem 40:773–778

    Article  CAS  Google Scholar 

  45. Fontes AF, Passos FML, Passos FJV (2001) A mechanistical mathematical model to predict lactose hydrolysis by β-galactosidase in a permeabilized cell mass of Kluyveromyces lactis: validity and sensitivity analysis. Process Biochem 37:267–274

    Article  CAS  Google Scholar 

  46. Ornelas AP, Silveira WB, Sampaio FC, Passos FML (2008) The activity of β-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate. J Appl Microbiol 104(4):1008–1013

    Article  CAS  PubMed  Google Scholar 

  47. Adalberto PR, Massabni AC, Carmona EC, Goulart AJ, Marques DP, Rubens M (2010) Effect of divalent metal ions on the activity and stability of β-galactosidase isolated from Kluyveromyces lactis. Rev Ciênc Farm Básica Apl 31:143–150

    Google Scholar 

  48. Lo S, Dugdale ML, Jeerh N, Ku T, Roth NJ, Huber RE (2010) Studies of Glu-416 variants of b-galactosidase (E. coli) show that the active site Mg2+ is not important for structure and indicate that the main role of Mg2+ is to mediate optimization of active site chemistry. Protein J 29:26–31

    Article  CAS  PubMed  Google Scholar 

  49. Jacobson RH, Zhang X-J, DuBose RF, Matthews BW (1994) Three-dimensional structure of β-galactosidase from E. coli. Nature 369:761–766

    Article  CAS  PubMed  Google Scholar 

  50. Pereira-Rodríguez A, Fernández-Leiro R, González-Siso MI, Cerdán ME, Becerra M, Sanz-Aparicio J (2012) Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. J Struct Biol 177:392–401

    Article  PubMed  CAS  Google Scholar 

  51. Albuquerque TLD, Rueda N, Dos Santos JCS, Barbosa O, Ortiz C, Binay B, Özdemir E, Gonçalves LRB, Fernandez-Lafuente R (2016) Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochem 51(7):865–874

    Article  CAS  Google Scholar 

  52. Silva JA, Macedo GPP, Rodrigues DSS, Giordano RLC, Gonçalves LRB (2012) Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochem Eng J 60:16–24

    Article  CAS  Google Scholar 

  53. Mendes AA, de Castro HF, Andrade GSS, Tardioli PW, Giordano RLC (2013) Preparation and application of epoxy-chitosan/alginate support in the immobilization of microbial lipases by covalent attachment. React Funct Polym 73(1):160–167

    Article  CAS  Google Scholar 

  54. Adriano WS, Mendonça DB, Rodrigues DS, Mammarella EJ, Giordano RLCC (2008) Improving the properties of chitosan as support for the covalent multipoint immobilization of chymotrypsin. Biomacromol 9(8):2170–2179

    Article  CAS  Google Scholar 

  55. Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Mateo GDOC, Fernández-Lafuente R, Guisán JM (2006) different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol 39(4):877–882

    Article  CAS  Google Scholar 

  56. Dos Santos JCS, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7:2413–2432

    Article  CAS  Google Scholar 

  57. Dwevedi A, Kayastha AM (2009) Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresour Technol 100(10):2667–2675

    Article  CAS  PubMed  Google Scholar 

  58. Mendes AA, Oliveira PC, Castro HF, Giordano RLC (2011) Aplicação de quitosana como suporte para a imobilização de enzimas de interesse industrial. Quim Nova 34(5):831–840

    CAS  Google Scholar 

  59. Price NC, Stevens L (2000) Fundamentals of enzymology: the cell and molecular biology of catalytic proteins. Oxford University Press, Oxford

    Google Scholar 

  60. Illanes A (2008) Enzyme biocatalysis—principles and applications. Springer, Amsterdam

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Brazilian research agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Valderez Ponte Rocha or Luciana Rocha Barros Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, M.F.M., Hortêncio, L.C., de Albuquerque, T.L. et al. Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564. Bioprocess Biosyst Eng 43, 711–722 (2020). https://doi.org/10.1007/s00449-019-02270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02270-y

Keywords

Navigation