Skip to main content
Log in

An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Currently, some cases about the expression of flavor peptides with microorganisms were reported owing to the obvious advantages of biological expression over traditional methods. However, beefy meaty peptide (BMP), the focus of umami peptides, has neither been concerned in its safe expression nor its overproduction in fermenter. In this study, multi-copy BMP (8BMP) was successfully auto-inducibly expressed and efficiently produced in Bacillus subtilis 168. First, 8BMP was successfully auto-inducibly expressed with srfA promoter in B. subtilis 168. Further, the efficient production of 8BMP was researched in a 5-L fermenter: the fermentation optimized by Pontryagin’s maximum principle obtained the highest 8BMP yield (3.16 g/L), which was 1.2 times and 1.8 times than that of two-stage feeding cultivation (2.67 g/L) and constant-rate feeding cultivation (1.75 g/L), respectively. Overall, the auto-inducible expression of 8BMP in B. subtilis and fermentation with Pontryagin’s maximum principle are conductive for overproduction of BMP and other peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kurihara K (2015) Umami the fifth basic taste: history of studies on receptor mechanisms and role as a food flavor. Biomed Res Int 2015(6):189402–189411. https://doi.org/10.1155/2015/189402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Roper SD, Chaudhari N (2017) Taste buds: cells, signals and synapses. Nat Rev Neurosci 18(8):485–497. https://doi.org/10.1038/nrn.2017.68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yamasaki Y, Maekawa K (1978) A peptide with delicious taste. Agric Biol Chem 42(9):1761–1765. https://doi.org/10.1080/00021369.1978.10863242

    Article  CAS  Google Scholar 

  4. Yamasaki Y, Maekawa K (1980) Synthesis of a peptide with delicious taste. Agric Biol Chem 44(1):93–97. https://doi.org/10.1271/bbb1961.44.93

    Article  CAS  Google Scholar 

  5. Wang K, Maga JA, Bechtel PJ (1995) Stability of beefy meaty peptide to pasteurization and sterilization temperatures. Lebensm-Wiss Technol 28(5):539–542. https://doi.org/10.1006/fstl.1995.0089

    Article  CAS  Google Scholar 

  6. Zeng SR, Wang YP, Yang YQ, Jian Z (2010) Expression and identification of a small recombinant beefy meaty peptide secreted by the methylotrophic yeast Pichia pastoris. Afr J Microbiol Res 4(24):2754–2762. https://doi.org/10.1186/1471-2164-11-713

    Article  CAS  Google Scholar 

  7. Yin Z, Xiong W, Zhou L, Pan Z, Gou X, Venkitasamy C, Guo S, Zhao L (2017) Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein. Food Chem 227:78–84. https://doi.org/10.1016/j.foodchem.2017.01.096

    Article  CAS  Google Scholar 

  8. Li Y (2012) A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein. Protein Expres Purif 81(2):201–210. https://doi.org/10.1016/j.pep.2011.10.011

    Article  CAS  Google Scholar 

  9. Xia L, Zhang F, Liu Z, Ma J, Yang J (2013) Expression and characterization of cecropinXJ, a bioactive antimicrobial peptide from Bombyx mori (Bombycidae, Lepidoptera) in Escherichia coli. Exp Ther Med 5(6):1745–1751. https://doi.org/10.3892/etm.2013.1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wu D, Lu Y, Huang H, Ma L, Che Y, Zha X, Yao B, Yang P (2013) High-level secretory expression of metchnikowin in Escherichia coli. Protein Expr Purif 91(1):49–53. https://doi.org/10.1016/j.pep.2013.07.003

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Meng Q, Gao W, Hou J, Ahmed Z (2011) Expression and purification of beefy meaty peptide in Pichia pastoris. Korean J Chem Eng 28(3):848–852. https://doi.org/10.1007/s11814-010-0439-5

    Article  CAS  Google Scholar 

  12. Zhao L, Zhang Y, Venkitasamy C, Pan Z, Zhang L, Guo S, Xiong W, Xia H, Wenlong L, Xinhua G (2017) Preparation of umami octopeptide with recombined Escherichia coli: feasibility and challenges. Bioengineered 9(1):1. https://doi.org/10.1080/21655979.2017.1378839

    Article  CAS  Google Scholar 

  13. Zhang Y, Venkitasamy C, Pan Z, Liu W, Zhao L (2016) Novel umami ingredients: umami peptides and their taste. J Food Sci 82(1):16–23. https://doi.org/10.1111/1750-3841.13576

    Article  PubMed  CAS  Google Scholar 

  14. Guan C, Cui W, Cheng J, Zhou L, Guo J, Hu X, Xiao G, Zhou Z (2015) Construction and development of an auto-regulatory gene expression system in Bacillus subtilis. Microb Cell Fact 14(1):150–164. https://doi.org/10.1186/s12934-015-0341-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheng J, Guan C, Cui W, Zhou L, Liu Z, Li W, Zhou Z (2016) Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering. Protein Expr Purif 127:81–87. https://doi.org/10.1016/j.pep.2016.07.008

    Article  PubMed  CAS  Google Scholar 

  16. Chen J, Gai Y, Gang F, Zhou W, Zhang D, Wen J (2015) Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Biotechnol Lett 37(4):899–906. https://doi.org/10.1007/s10529-014-1755-3

    Article  PubMed  CAS  Google Scholar 

  17. Lu Y, Lin Q, Wang J, Wu Y, Bao W, Lv F, Lu Z (2010) Overexpression and characterization in Bacillus subtilis of a positionally nonspecific lipase from Proteus vulgaris. J Ind Microbiol Biotechnol 37(9):919–925. https://doi.org/10.1007/s10295-010-0739-0

    Article  PubMed  CAS  Google Scholar 

  18. Olmos-Soto J, Contreras-Flores R (2003) Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol 62(4):369–373. https://doi.org/10.1007/s00253-003-1289-4

    Article  PubMed  CAS  Google Scholar 

  19. Phan TT, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expres Purif 46(2):189–195. https://doi.org/10.1016/j.pep.2005.07.005

    Article  CAS  Google Scholar 

  20. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236. https://doi.org/10.1093/jxb/erh005

    Article  CAS  Google Scholar 

  21. Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180(6):1438–1445

    Article  CAS  Google Scholar 

  22. Karata AY, Çetin S, Özcengiz G (2003) The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim Biophys Acta 1626(1):51–56. https://doi.org/10.1016/S0167-4781(03)00037-X

    Article  CAS  Google Scholar 

  23. Stefanic P, Decorosi F, Viti C, Petito J, Cohan FM, Mandic-Mulec I (2012) The quorum sensing diversity within and between ecotypes of Bacillus subtilis. Environ Microbiol 14(6):1378–1389. https://doi.org/10.1111/j.1462-2920.2012.02717.x

    Article  PubMed  CAS  Google Scholar 

  24. Cui W, Suo F, Cheng J, Han L, Hao W, Guo J, Zhou Z (2018) Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microb Biotechnol 11(5):930–942. https://doi.org/10.1111/1751-7915.13298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wenzel M, Müller A, Siemann-Herzberg M, Altenbuchner J (2011) Self-inducible Bacillus subtilis expression system enables the reliable and inexpensive protein production by high-cell-density fermentation. Appl Environ Microb. 77:6419–6445. https://doi.org/10.1128/AEM.05219-11

    Article  CAS  Google Scholar 

  26. Schwarz D, Schoenenwald AK, Dörrstein J, Sterba J, Kahoun D, Fojtíková P, Vilímek J, Schieder D, Zollfrank C, Sieber V (2018) Biosynthesis of poly-3-hydroxybutyrate from grass silage by a two-stage fermentation process based on an integrated biorefinery concept. Bioresour Technol 269:237–245. https://doi.org/10.1016/j.biortech.2018.08.064

    Article  PubMed  CAS  Google Scholar 

  27. Wang L, Yuan J, Wu C, Wang X (2019) Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture. Optim Lett 1:1–15. https://doi.org/10.1007/s11590-017-1220-z

    Article  Google Scholar 

  28. Laible M, Boonrod K (2009) Homemade site directed mutagenesis of whole plasmids. J Vis Exp 11(27):e1135–e1135. https://doi.org/10.3791/1135

    Article  Google Scholar 

  29. Wang H, Li X, Ma Y, Song JP (2014) Characterization and high-level expression of a metagenome-derived alkaline pectate lyase in recombinant Escherichia coli. Process Biochem 49(1):69–76. https://doi.org/10.1016/j.procbio.2013.10.001

    Article  CAS  Google Scholar 

  30. Boltyanskiĭ VG, Gamkrelidze RV, Pontryagin LS (1961) The theory of optimal processes, vol 110. Routledge, Abingdon

    Google Scholar 

  31. Shene C, Andrews BA, Asenjo JA (1999) Fedbatch fermentations of Bacillus subtilis ToC46 (pPFF1) for the synthesis of a recombinant β-1,3-glucanase: experimental study and modelling. Enzyme Microb Tech 24(6):247–254. https://doi.org/10.1016/j.dam.2005.02.020

    Article  CAS  Google Scholar 

  32. Luedeking R, Piret EL (2000) A kinetic study of the lactic acid fermentation Batch process at controlled pH. Biotechnol Bioeng 67(6):636–644. https://doi.org/10.1002/jbmte.390010406

    Article  PubMed  CAS  Google Scholar 

  33. Zhan X (2007) Primary study on kinetics model of Bacillus subtilis batch fermentation. Food Sci 28(5):223–227. https://doi.org/10.1016/S1872-2040(07)60036-X

    Article  CAS  Google Scholar 

  34. Chi L, Fan D, Ma X, Luo Y, Zhu C (2011) Characteristics of high-cell density cultivation of recombinant Escherichia coli producing RHLC using the fermentor pressure shifting strategy. Biotechnol Bioproc E 16:488–494

    Article  CAS  Google Scholar 

  35. Khushoo A, Pal Y, Singh BN, Mukherjee KJ (2004) Extracellular expression and single step purification of recombinant l-asparaginase II. Protein Expr Purif 38(1):29–36. https://doi.org/10.1016/j.pep.2004.07.009

    Article  CAS  Google Scholar 

  36. Salman T, Kamal M, Ahmed M, Mariam Siddiqa S, Khan R, Hassan A (2016) Medium optimization for the production of amylase by Bacillus subtilis RM16 in Shake-flask fermentation. Pak J Pharml Sci 29:439–444

    CAS  Google Scholar 

  37. Martínez-Martínez I, Kaiser C, Rohde A, Ellert A, García-Carmona F, Sanchez-Ferrer A, Luttmann R (2010) High-level production of Bacillus subtilis glycine oxidase by fed-batch cultivation of recombinant Escherichia coli Rosetta (DE3). Biotechnol Progr 23(3):645–651. https://doi.org/10.1021/bp0603917

    Article  CAS  Google Scholar 

  38. Norsyahida A, Rahmah N, Ahmad RMY (2010) Effects of feeding and induction strategy on the production of Bm R1 antigen in recombinant E coli. Lett Appl Microbiol 49(5):544–550. https://doi.org/10.1111/j.1472-765X.2009.02694.x

    Article  CAS  Google Scholar 

  39. Chen W, Graham C, Ciccarelli R (1997) Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J Ind Microbiol Biotechnol 18(1):43–48. https://doi.org/10.1038/sj.jim.2900355

    Article  PubMed  CAS  Google Scholar 

  40. Ramalingam S, Gautam P, Mukherjee KJ, Jayaraman G (2007) Effects of post-induction feed strategies on secretory production of recombinant streptokinase in Escherichia coli. Biochem Eng J 33(1):34–41. https://doi.org/10.1016/j.bej.2006.09.019

    Article  CAS  Google Scholar 

  41. Guan C, Cui W, Cheng J, Liu R, Liu Z, Zhou L, Zhou Z (2016) Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. N Biotechnol 33(3):372–379. https://doi.org/10.1016/j.nbt.2016.01.005

    Article  PubMed  CAS  Google Scholar 

  42. Zhu Y, Liu Y, Li J, Shin HD, Du G, Long L, Jian C (2015) An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N -acetylglucosamine production in recombinant Bacillus subtilis. Bioresour Technol 177:387–392. https://doi.org/10.1016/j.biortech.2014.11.055

    Article  PubMed  CAS  Google Scholar 

  43. Richard A, Margaritis A (2004) Empirical modeling of batch fermentation kinetics for poly (glutamic acid) production and other microbial biopolymers. Biotechnol Bioeng 87(4):501–515. https://doi.org/10.1002/bit.20156

    Article  PubMed  CAS  Google Scholar 

  44. Panda I, Balabantaray S, Sahoo SK, Patra N (2018) Mathematical model of growth and polyhydroxybutyrate production using microbial fermentation of Bacillus subtilis. Chem Eng Commun 205(2):249–256. https://doi.org/10.1080/00986445.2017.1384923

    Article  CAS  Google Scholar 

  45. Huang H, Ridgway D, Gu T, Moo-Young MJB, Engineering B (2004) Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst Eng 27:63–69. https://doi.org/10.1007/s00449-004-0391-z

    Article  PubMed  CAS  Google Scholar 

  46. Park Y, Kai K, Iijima S, Kobayashi T (1992) Enhanced beta-galactosidase production by high cell-density culture of recombinant Bacillus subtilis with glucose concentration control. Biotechnol Bioeng 40(6):686. https://doi.org/10.1002/bit.260400607

    Article  PubMed  CAS  Google Scholar 

  47. Seok OhJ, Kim B-G, Hyun Park T (2002) Importance of specific growth rate for subtilisin expression in fed-batch cultivation of Bacillus subtilis spoIIG mutant. Enzyme Microb Tech 30(6):747–751. https://doi.org/10.1016/S0141-0229(02)00052-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31601418, 31601444 and 21506172), the School level project of Hengyang Normal University (18D14), the Applied Basic Research Programs of Science and Technology Department of Sichuan Province (2019YJ0390), the Spring Sunshine Plan of the Ministry of Education of China (Z2015121), the Key Project of Xihua University of China (z1420524 and z1420525), the Department of Education of Sichuan Province of China (15205445), the Key Laboratory program of Food and Biotechnology of Xihua University of China (szjj2015-013 and szjj2015-014). Undergraduate Training Program for Innovation (201510623003 and 201510623053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Sun.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Wu, Y., Ding, W. et al. An auto-inducible expression and high cell density fermentation of Beefy Meaty Peptide with Bacillus subtilis. Bioprocess Biosyst Eng 43, 701–710 (2020). https://doi.org/10.1007/s00449-019-02268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02268-6

Keywords

Navigation