Abstract
Short-term parameters correlating to long-term protein stability, such as the protein cloud point temperature (Tcloud), are of interest to improve efficiency during protein product development. Such efficiency is reached if short-term parameters are obtained in a low volume and high-throughput (HT) manner. This study presents a low volume HT detection method for (sub-zero) Tcloud determination of lysozyme, as such an experimental method is not available yet. The setup consists of a cryogenic device with an automated imaging system. Measurement reproducibility (median absolute deviation of 0.2 °C) and literature-based parameter validation (Pearson correlation coefficient of 0.996) were shown by a robustness and validation study. The subsequent case study demonstrated a partial correlation between the obtained apparent Tcloud parameter and long-term protein stability as a function of lysozyme concentration, ion type, ionic strength, and freeze/thaw stress. The presented experimental setup demonstrates its ability to advance short-term strategies for efficient protein formulation development.
Graphical Abstract





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Cromwell MEM, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:E572–E579. https://doi.org/10.1208/aapsj080366
Mahler H-C, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98:2909–2934. https://doi.org/10.1002/jps.21566
Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E501–E507. https://doi.org/10.1208/aapsj080359
Wang W (2005) Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 289:1–30. https://doi.org/10.1016/j.ijpharm.2004.11.014
Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10:348–351. https://doi.org/10.2174/138920109788488932
Wang W, Nema S, Teagarden D (2010) Protein aggregation-pathways and influencing factors. Int J Pharm 390:89–99. https://doi.org/10.1016/j.ijpharm.2010.02.025
Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336. https://doi.org/10.1023/A:1025771421906
International Council for Harmonization (1995) Stability testing of biotechnological/biological products Q5C. ICH Harmon Tripart Guidel, pp 1–8
Asherie N (2004) Protein crystallization and phase diagrams. Methods 34:266–272. https://doi.org/10.1016/j.ymeth.2004.03.028
Baumgartner K, Galm L, Nötzold J et al (2015) Determination of protein phase diagrams by microbatch experiments: exploring the influence of precipitants and pH. Int J Pharm 479:28–40. https://doi.org/10.1016/j.ijpharm.2014.12.027
Weiss WF IV, Young TM, Roberts CJ (2009) Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. Int J Drug Dev Res 98:1246–1277. https://doi.org/10.1002/jps
Goldberg DS, Bischop SM, Shah AU, Sathish HA (2011) Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stability. J Pharm Sci 100:1306–1315. https://doi.org/10.1002/jps
George A, Wilson WW (1994) Predicting protein crystallization from a dilute solution property. Acta Crystallogr Sect D Biol Crystallogr 50:361–365. https://doi.org/10.1107/s0907444994001216
Bauer KC, Göbel M, Schwab M-L et al (2016) Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions. Int J Pharm 511:276–287. https://doi.org/10.1016/j.ijpharm.2016.07.007
Galm L, Morgenstern J, Hubbuch J (2015) Manipulation of lysozyme phase behavior by additives as function of conformational stability. Int J Pharm 494:370–380. https://doi.org/10.1016/j.ijpharm.2015.08.045
Maddux NR, Iyer V, Cheng W et al (2014) High throughput prediction of the long-term stability of pharmaceutical macromolecules from short-term multi-instrument spectroscopic data. J Pharm Sci 103:828–839. https://doi.org/10.1002/jps.23849
Hirano A, Hamada H, Okubo T et al (2007) Correlation between thermal aggregation and stability of lysozyme with salts described by molar surface tension increment: an exceptional propensity of ammonium salts as aggregation suppressor. Protein J 26:423–433. https://doi.org/10.1007/s10930-007-9082-3
Galm L, Amrhein S, Hubbuch J (2017) Predictive approach for protein aggregation: correlation of protein surface characteristics and conformational flexibility to protein aggregation propensity. Biotechnol Bioeng 114:1170–1183. https://doi.org/10.1002/bit.25949
Schermeyer MT, Wöll AK, Kokke B et al (2017) Characterization of highly concentrated antibody solution—a toolbox for the description of protein long-term solution stability. MAbs 9:1169–1185. https://doi.org/10.1080/19420862.2017.1338222
Klijn ME, Hubbuch J (2019) Correlating multidimensional short-term empirical protein properties to long-term protein physical stability data via empirical phase diagrams. Int J Pharm 560:166–174. https://doi.org/10.1016/j.ijpharm.2019.02.006
Kumar V, Dixit N, Zhou L, Fraunhofer W (2011) Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations. Int J Pharm 421:82–93. https://doi.org/10.1016/j.ijpharm.2011.09.017
Thiagarajan G, Semple A, James JK et al (2016) A comparison of biophysical characterization techniques in predicting monoclonal antibody stability. MAbs 8:1088–1097. https://doi.org/10.1080/19420862.2016.1189048
Broide ML, Tominc TM, Saxowsky MD (1996) Using phase transitions to investigate the effect of salts on protein interactions. Phys Rev E 53:6325–6335. https://doi.org/10.1103/PhysRevE.53.6325
Heijna MCR, Van Enckevort WJP, Vlieg E (2007) Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth. Phys Rev 76:1–7. https://doi.org/10.1103/PhysRevE.76.011604
Liu C, Asherie N, Lomakin A et al (1996) Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s. Proc Natl Acad Sci USA 93:377–382. https://doi.org/10.1073/pnas.93.1.377
Grigsby JJ, Blanch HW, Prausnitz JM (2001) Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH. Biophys Chem 91:231–243. https://doi.org/10.1016/S0301-4622(01)00173-9
Park EJ, Bae YC (2004) Cloud-point temperatures of lysozyme in electrolyte solutions by thermooptical analysis technique. Biophys Chem 109:169–188. https://doi.org/10.1016/j.bpc.2003.11.001
Raut AS, Kalonia DS (2016) Effect of excipients on liquid-liquid phase separation and aggregation in dual variable domain immunoglobulin protein solutions. Mol Pharm 13:774–783. https://doi.org/10.1021/acs.molpharmaceut.5b00668
Taratuta VG, Holschbach A, Thurston GM et al (1990) Liquid-liquid phase separation of aqueous lysozyme solutions: effects of pH and salt identity. J Phys Chem 94:2140–2144. https://doi.org/10.1021/j100368a074
Curtis RA, Prausnitz JM, Blanch HW (1998) Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes. Biotechnol Bioeng 57:11–21. https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1%3c11:AID-BIT2%3e3.0.CO;2-Y
Boire A, Menut P, Morel MH, Sanchez C (2013) Phase behaviour of a wheat protein isolate. Soft Matter 9:11417–11426. https://doi.org/10.1039/c3sm51489g
Muschol M, Rosenberger F (1997) Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J Chem Phys 107:1953–1962. https://doi.org/10.1063/1.474547
Bloustine J, Virmani T, Thurston GM, Fraden S (2006) Light scattering and phase behavior of lysozyme-poly (ethylene glycol) mixtures. Phys Rev Lett 96:1–4. https://doi.org/10.1103/PhysRevLett.96.087803
Galkin O, Vekilov PG (2000) Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc Natl Acad Sci 97:6277–6281. https://doi.org/10.1073/pnas.110000497
Pincemaille J, Banc A, Chauveau E et al (2018) Methods for screening cloud point temperatures. Food Biophys 13:422–431. https://doi.org/10.1007/s11483-018-9548-1
Williamson AP, Kiefer J (2014) Automatic low-cost method to determine the solubility of liquid-liquid mixtures by continuous-flow cloud point titration. Chem Eng Technol 37:1736–1740. https://doi.org/10.1002/ceat.201400091
Wöll AK, Schütz J, Zabel J, Hubbuch J (2019) Analysis of phase behavior and morphology during freeze-thaw applications of lysozyme. Int J Pharm 555:153–164. https://doi.org/10.1016/j.ijpharm.2018.11.047
Wöll AK, Desombre M, Enghauser L, Hubbuch J (2019) A phase diagram based toolbox to assess the impact of freeze/thaw ramps on the phase behavior of proteins. Bioprocess Biosyst Eng. 1:1. https://doi.org/10.1007/s00449-019-02215-5
Kröner F, Hubbuch J (2013) Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application. J Chromatogr A 1285:78–87. https://doi.org/10.1016/j.chroma.2013.02.017
GE Healthcare (2007) PD-10 desalting column
Klijn ME, Hubbuch J (2018) Application of empirical phase diagrams for multidimensional data visualization of high-throughput microbatch crystallization experiments. J Pharm Sci 107:2063–2069. https://doi.org/10.1016/j.xphs.2018.04.018
Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59–66. https://doi.org/10.2307/2685263
Leskovec J, Rajaraman A, Ullman JD (2014) Mining of massive datasets. Cambridge University Press
Lewis GN, Randall M (1921) The activity coefficient of strong electrolytes. J Am Chem Soc 43:1112–1154. https://doi.org/10.1021/ja01438a014
Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch für Exp Pathol und Pharmakologie 25:1–30. https://doi.org/10.1007/BF01838161
Schwierz N, Horinek D, Sivan U, Netz RR (2016) Reversed Hofmeister series—the rule rather than the exception. Curr Opin Colloid Interface Sci 23:10–18. https://doi.org/10.1016/j.cocis.2016.04.003
Boström M, Tavares FW, Finet S et al (2005) Why forces between proteins follow different Hofmeister series for pH above and below pI. Biophys Chem 117:217–224. https://doi.org/10.1016/j.bpc.2005.05.010
Zhang Y, Cremer PS (2009) The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci 106:15249–15253. https://doi.org/10.1073/pnas.0907616106
Wetter LR, Deutsch HF (1951) Immunological studies on egg white proteins IV. Immunochemical and physical studies of lysozyme. J Biol Chem 192:237–242
Ries-Kautt MM, Ducruix AF (1989) Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J Biol Chem 264:745–748
Retailleau P, Riès-Kautt M, Ducruix A (1997) No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH. Biophys J 73:2156–2163. https://doi.org/10.1016/S0006-3495(97)78246-8
Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311. https://doi.org/10.1016/j.ymeth.2004.03.021
Ataka M, Tanaka S (1986) The growth of large single crystals of lysozyme. Biopolymers 25:337–350. https://doi.org/10.1002/bip.360250213
Riès-Kautt M, Ducruix A (1997) [3] Inferences drawn from physicochemical studies of crystallogenesis and precrystalline state. Methods Enzymol 276:23–59. https://doi.org/10.1016/S0076-6879(97)76049-X
Burke MW, Leardi R, Judge RA, Pusey ML (2001) Quantifying main trends in lysozyme nucleation: the effect of precipitant concentration, supersaturation, and impurities. Cryst Growth Des 1:333–337. https://doi.org/10.1021/cg0155088
Chernov AA (2003) Protein crystals and their growth. J Struct Biol 142:3–21. https://doi.org/10.1016/S1047-8477(03)00034-0
Garcıa-Ruiz JM (2003) Nucleation of protein crystals. J Struct Biol 142:22–31. https://doi.org/10.1016/S1047-8477(03)00035-2
Singh SK, Nema S (2010) Freezing and thawing of protein solutions. In: Formulation and process development strategies for manufacturing biopharmaceuticals. Wiley, pp 625–675
Mullin JW (1992) Crystallization, 3rd edn. Butterworth Heinemann, Oxford
Kestin J, Sokolov M, Wakeham WA (1978) Viscosity of liquid water in the range −8 °C to 150 °C. J Phys Chem Ref Data 7:941–948. https://doi.org/10.1063/1.555581
Aleksandrov AA, Dzhuraeva EV, Utenkov VF (2012) Viscosity of aqueous solutions of sodium chloride. High Temp 50:354–358. https://doi.org/10.1134/S0018151X12030029
Goldsack DE, Franchetto RC (1978) The viscosity of concentrated electrolyte solutions. II. Temperature dependence. Can J Chem 56:1442–1450. https://doi.org/10.1139/v78-236
Pusey ML (1992) Continuing adventures in lysozyme crystal growth. J Cryst Growth 122:1–7. https://doi.org/10.1016/0022-0248(92)90219-9
Vekilov PG (2010) Nucleation. Cryst Growth Des 10:5007–5019. https://doi.org/10.1021/cg1011633
Lu J, Carpenter K, Li RJ et al (2004) Cloud-point temperature and liquid-liquid phase separation of supersaturated lysozyme solution. Biophys Chem 109:105–112. https://doi.org/10.1016/j.bpc.2003.10.021
Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60. https://doi.org/10.1016/S0378-5173(00)00423-3
Acknowledgements
This work was financially supported by the BE-Basic Foundation (https://www.be-basic.org), under project FS2.003. The authors want to thank academic and industrial partners for scientific discussions during the development of this work. Additionally, the authors would like to thank Lena Enghauser for contributing to the experimental work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors report no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Klijn, M.E., Wöll, A.K. & Hubbuch, J. Apparent protein cloud point temperature determination using a low volume high-throughput cryogenic device in combination with automated imaging. Bioprocess Biosyst Eng 43, 439–456 (2020). https://doi.org/10.1007/s00449-019-02239-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00449-019-02239-x

