Skip to main content

Advertisement

Log in

Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The properties of the anode material and structure are critical to the microbial growth and interfacial electron transfer between the biofilm and the anode. In this paper, we prepared the nitrogen-doped 3D expanded graphite foam (NEGF) by simple, rapid and inexpensive methods of liquid nitrogen expansion and hydrothermal treatment from commercial graphite foil (GF). X-ray photoelectron spectroscopy confirmed the success of nitrogen doping on expanded graphite foam (EGF). Using cyclic voltammetry and electrochemical impedance spectroscopy, the NEGF and EGF electrode exhibited increased electrochemical active surface area and fast interfacial electron transfer ability than that of pristine GF, and NEGF electrode performed even better. Scanning electron microscopy revealed that NEGF and EGF possessed graphene-like structure and large surface area. MFCs equipped with NEGF or EGF anodes, respectively, achieved maximum power density of 0.739 and 0.536 W m−2, which was about 17.4 and 12.6 times larger than that of MFCs with GF anodes (0.0451 W m−2). The anode and cathode polarization curves further confirmed that the different anode other than the cathode was responsible for the advanced performance of MFCs. The morphology of the biofilm on three kinds of anodes proved the densest biofilm formed on NEGF anode. All the results indicated the synergistic effect of 3D graphene-like structure and N-doped surface on the performance of MFCs, which might provide special insights into designing simple and efficient route for anode construction to achieve promising electricity generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  Google Scholar 

  2. Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  CAS  Google Scholar 

  3. Zhao CE, Gai PP, Song RB, Chen Y, Zhang JR, Zhu JJ (2017) Nanostructured material-based biofuel cells: recent advances and future prospects. Chem Soc Rev 46:1545–1564

    Article  CAS  Google Scholar 

  4. Sonawane JM, Yadav A, Ghosh PC, Adeloju SB (2017) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron 90:558–576

    Article  CAS  Google Scholar 

  5. He Z, Liu J, Qiao Y, Li CM, Tan TTY (2012) Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett 12:4738–4741

    Article  CAS  Google Scholar 

  6. Logan BE (2007) Microbial fuel cells. Wiley, New York

    Book  Google Scholar 

  7. Wang RW, Yan M, Li HD, Zhang L, Peng BQ, Sun JZ, Liu D, Liu SQ (2018) FeS2 nanoparticles decorated graphene as microbial fuel cell anode achieving high power density. Adv Mater 30:e1800618

    Article  Google Scholar 

  8. Wu GM, Bao H, Xia Z, Yang B, Lei LC, Lia ZJ, Liu CX (2018) Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. J Power Sources 384:86–92

    Article  CAS  Google Scholar 

  9. Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  10. Wang X, Cheng SA, Feng YJ, Merrill MD, Saito T, Logan BE (2009) Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43:6870–6874

    Article  CAS  Google Scholar 

  11. Hidalgo D, Tommasi T, Bocchini S, Chiolerio A, Chiodoni A, Mazzarino I, Ruggeri B (2016) Surface modification of commercial carbon felt used as anode for microbial fuel cells. Energy 99:193–201

    Article  CAS  Google Scholar 

  12. Deng LF, Dong G, Zhang YY, Li DN, Lu T, Chen Y, Yuan HR, Chen Y (2019) Lysine-modified TiO2 nanotube array for optimizing bioelectricity generation in microbial fuel cells. Electrochim Acta 300:163–170

    Article  CAS  Google Scholar 

  13. Cai H, Wang J, Bu YF, Zhong Q (2013) Treatment of carbon cloth anodes for improving power generation in a dual-chamber microbial fuel cell. J Chem Technol Biotechnol 88:623–628

    Article  CAS  Google Scholar 

  14. Ci SQ, Wen ZH, Chen JH, He Z (2012) Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem Commun 14:71–74

    Article  CAS  Google Scholar 

  15. Yang Y, Liu TY, Zhu X, Zhang F, Ye DD, Liao Q, Li Y (2016) Boosting power density of microbial fuel cells with 3D nitrogen-doped graphene aerogel electrode. Adv Sci 3:1600097

    Article  Google Scholar 

  16. Xie X, Ye M, Hu LB, Liu N, McDonough JR, Chen W, Alshareef HN, Criddle CS, Cui Y (2012) Carbon nanotube-coated macroporous sponge for microbialfuel cell electrodes. Energy Environ Sci 5:5265–5270

    Article  CAS  Google Scholar 

  17. Xie X, Yu GH, Liu N, Bao ZN, Criddle CS, Cui Y (2012) Graphene sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ Sci 5:6862–6866

    Article  CAS  Google Scholar 

  18. Xie X, Hu LB, Pasta M, Wells GF, Kong DS, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11:291–296

    Article  CAS  Google Scholar 

  19. Yong YC, Dong XC, Chan-Park MB, Song H, Chen P (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6:2394–2400

    Article  CAS  Google Scholar 

  20. Wang H, Wang G, Ling Y, Qian F, Song Y, Lu X, Chen SW, Tong Y, Li Y (2013) High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale 5:10283–10290

    Article  CAS  Google Scholar 

  21. Lu M, Qian Y, Yang C, Huang X, Li H, Xie X, Huang L, Huang W (2016) Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy 32(Complete):382–388.

    Article  CAS  Google Scholar 

  22. Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47:14525–14532

    Article  CAS  Google Scholar 

  23. Chen SL, He GH, Liu Q, Harnisch F, Yan Zhou, Chen Y, Hanif M, Wang SQ, Peng XW, Hou HQ, Schroder U (2012) Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy Environ Sci 5:9769–9772

    Article  CAS  Google Scholar 

  24. Bian B, Shi D, Cai XB, Hu MJ, Guo QQ, Zhang CH, Wang Q, Sun XLA, Yang J (2018) 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 44:174–180

    Article  CAS  Google Scholar 

  25. Zhao S, Li Y, Yin H, Liu Z, Luan E, Feng Z, Tang Z, Liu S (2015) Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci Adv 1:e1500372–e1500372

    Article  Google Scholar 

  26. Zhang J, Wang G, Liao ZQ, Zhang PP, Wang FX, Zhuang XD, Zschech E, Feng XL (2017) Iridium Nanoparticles Anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 40:27–33

    Article  CAS  Google Scholar 

  27. Chen LY, Li YZ, Yao JN, Wu GM, Yang B, Lei LC, Hou Y, Li ZJ (2019) Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells. J Power Sources 412:86–92

    Article  CAS  Google Scholar 

  28. Guo K, Freguia S, Dennis PG, Chen X, Donose BC, Keller J, Gooding JJ, Rabaey K (2013) Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ Sci Technol 47:7563–7570

    Article  CAS  Google Scholar 

  29. Santoro C, Guilizzoni M, Baena JC, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139

    Article  CAS  Google Scholar 

  30. Bi LL, Ci SQ, Cai PW, Li H, Wen ZH (2018) One-step pyrolysis route to three dimensional nitrogen-doped porous carbon as anode materials for microbial fuel cells. Appl Surf Sci 427:10–16

    Article  CAS  Google Scholar 

  31. Wu XS, Qiao Y, Shi ZZ, Tang W, Li CM (2018) Hierarchically porous N-doped CNTs/peduced graphene oxide composite for promoting flavin based interfacial electron transfer in microbial fuel cells. ACS Appl Mater Inter 10:11671–11677

    Article  CAS  Google Scholar 

  32. Mohamed HO, Sayed ET, Cho H, Park M, Obaid M, Kim H-Y, Barakat NAM (2018) Effective strategies for anode surface modification for power harvesting and industrial wastewater treatment using microbial fuel cells. J Environ Manag 206:228–235

    Article  CAS  Google Scholar 

  33. Kim JR, Cheng SA, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  CAS  Google Scholar 

  34. Zhao CE, Li JX, Chen Y, Chen JY (2019) Nitrogen and sulfur dual-doped graphene as an efficient metal-free electrocatalyst for the oxygen reduction reaction in microbial fuel cells. New J Chem 43:9389–9395

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  36. Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  CAS  Google Scholar 

  37. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841

    Article  Google Scholar 

  38. Ci SQ, Cai PW, Wen ZH, Li J (2015) Graphene-based electrode materials for microbial fuel cells. Sci China Mater 58:496–509

    Article  CAS  Google Scholar 

  39. Lau CL, Moehlenbrock MJ, Arechederra RL, Falase A, Garcia K, Rincon R, Minteer SD, Banta S, Gupta G, Babanova S, Atanassov P (2015) Paper based biofuel cells: Incorporating enzymatic cascades for ethanol and methanol oxidation. Int J Hydrogen Energy 40:14661–14666

    Article  CAS  Google Scholar 

  40. Feng CH, Ma L, Li FB, Mai HJ, Lang XM, Fan SS (2010) A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron 25:1516–1520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the National Natural Science Foundation of China (Grant No. 21601151) and the Scientific and Technological Research Projects of Henan Province, China (Grant No. 172102210449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Chao, S. & Chen, Q. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells. Bioprocess Biosyst Eng 43, 143–151 (2020). https://doi.org/10.1007/s00449-019-02212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02212-8

Keyword

Navigation