Skip to main content
Log in

Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Inulinases are used for the production of high-fructose syrup and fructooligosaccharides, and are widely utilized in food and pharmaceutical industries. In this study, different carbon sources were screened for inulinase production by Aspergillus niger in shake flask fermentation. Optimum working conditions of the enzyme were determined. Additionally, some properties of produced enzyme were determined [activation (Ea)/inactivation (Eia) energies, Q10 value, inactivation rate constant (kd), half-life (t1/2), D value, Z value, enthalpy (ΔH), free energy (ΔG), and entropy (ΔS)]. Results showed that sugar beet molasses (SBM) was the best in the production of inulinase, which gave 383.73 U/mL activity at 30 °C, 200 rpm and initial pH 5.0 for 10 days with 2% (v/v) of the prepared spore solution. Optimum working conditions were 4.8 pH, 60 °C, and 10 min, which yielded 604.23 U/mL, 1.09 inulinase/sucrase ratio, and 2924.39 U/mg. Additionally, Ea and Eia of inulinase reaction were 37.30 and 112.86 kJ/mol, respectively. Beyond 60 °C, Q10 values of inulinase dropped below one. At 70 and 80 °C, t1/2 of inulinase was 33.6 and 7.2 min; therefore, inulinase is unstable at high temperatures, respectively. Additionally, t1/2, D, ΔH, ΔG values of inulinase decreased with the increase in temperature. Z values of inulinase were 7.21 °C. Negative values of ΔS showed that enzymes underwent a significant process of aggregation during denaturation. Consequently, SBM is a promising carbon source for inulinase production by A. niger. Also, this is the first report on the determination of some properties of A. niger A42 (ATCC 204,447) inulinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. J Biosci 27:703–714

    CAS  PubMed  Google Scholar 

  2. Ronkart S, Blecker C, Fougnies C, Van Herck J, Wouters J, Paquot M (2006) Determination of physical changes of inulin related to sorption isotherms: An X-ray diffraction, modulated differential scanning calorimetry and environmental scanning electron microscopy study. Carbohyd Polym 63:210–217

    CAS  Google Scholar 

  3. Chi Z-M, Zhang T, Cao T-S, Liu X-Y, Cui W, Zhao C-H (2011) Biotechnological potential of inulin for bioprocesses. Biores Technol 102:4295–4303

    CAS  Google Scholar 

  4. Singh RS, Chauhan K, Kennedy JF (2016) A panorama of bacterial inulinases: production, purification, characterization and industrial applications. Int J Biol Macromol 96:312–322

    PubMed  Google Scholar 

  5. Singh P, Gill PK (2006) Production of inulinases: recent advances. Food Technol Biotechnol 44:151–162

    CAS  Google Scholar 

  6. Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases. Appl Biochem Biotechnol 81:35–52

    CAS  PubMed  Google Scholar 

  7. Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29:139–176

    CAS  PubMed  Google Scholar 

  8. Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212

    CAS  Google Scholar 

  9. Ohta K, Akimoto H, Moriyama S (2004) Fungal inulinases: enzymology, molecular biology and biotechnology. J Appl Glycosci 51:247–254

    CAS  Google Scholar 

  10. Singh R, Singh R (2017) Inulinases. In: Current developments in biotechnology and bioengineering: production, isolation and purification of industrial products. Elsevier, Amsterdam, pp 423–446

    Google Scholar 

  11. Singh RS, Chauhan K, Pandey A, Larroche C, Kennedy JF (2018) Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. Int J Biol Macromol 118:1974–1983

    CAS  PubMed  Google Scholar 

  12. Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Biores Technol 101:5290–5296

    CAS  Google Scholar 

  13. Ongen-Baysal G, Sukan SS, Vassilev N (1994) Production and properties of inulinase from Aspergillus niger. Biotech Lett 16:275–280

    CAS  Google Scholar 

  14. Cemeroğlu B (2015) Reaksiyon kinetiği. Bizim Grup Basımevi, Ankara

    Google Scholar 

  15. Pal A, Khanum F (2011) Characterizing and improving the thermostability of purified xylanase from Aspergillus niger DFR-5 grown on solid-state-medium. J Biochem Technol 2:203–209

    Google Scholar 

  16. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  17. Bender JP, Mazutti MA, de Oliveira D, Di Luccio M, Treichel H (2006) Inulinase production by Kluyveromyces marxianus NRRL Y-7571 using solid state fermentation. Appl Biochem Biotechnol 132:951–958

    Google Scholar 

  18. Kalil S, Suzan R, Mougeri F, Rodrigues M (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264

    CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  20. Ettalibi M, Baratti JC (1987) Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Appl Microbiol Biotechnol 26:13–20

    CAS  Google Scholar 

  21. de Oliveira Lino FS, Basso TO, Sommer MOA (2018) A synthetic medium to simulate sugarcane molasses. Biotechnol Biofuels 11:221

    Google Scholar 

  22. Demirci A, Öziyci HR, Karhan M, Turkenburg JP (2014) Fermentasyon besiyeri. In: Turhan I (ed) Endüstriyel mikrobiyolojiye giriş. Palme Yayıncılık, Ankara

    Google Scholar 

  23. Yuan X-L, Goosen C, Kools H, van der Maarel MJEC, van den Hondel CAMJJ, Dijkhuizen L, Ram AFJ (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073

    CAS  PubMed  Google Scholar 

  24. Grootwassink JWD, Hewitt GM (1983) Inducible and constitutive formation of -fructofuranosidase (inulase) in batch and continuous cultures of the yeast Kluyveromyces fragilis. Microbiology 129:31–41

    CAS  Google Scholar 

  25. Dinarvand M, Ariff BA, Moeini H, Masomian M, Mousavi SS, Nahavandi R, Mustafa S (2012) Effect of extrinsic and intrinsic parameters on inulinase production by Aspergillus niger ATCC 20611. Electron J Biotechnol 15:5

    Google Scholar 

  26. Saber W, El-Naggar NE (2009) Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnology 8:425–433

    CAS  Google Scholar 

  27. Makino Y, Treichel H, Mazutti MA, Maugeri F, Rodrigues MI (2009) Inulinase bio-production using agroindustrial residues: screening of microorganisms and process parameters optimization. J Chem Technol Biotechnol 84:1056–1062

    CAS  Google Scholar 

  28. Shuler ML, Kargi F, DeLisa M (2017) Bioprocess engineering: basic concepts, 3rd edn. Prentice Hall Upper Saddle River, NJ

    Google Scholar 

  29. Li Q, Coffman AM, Ju L-K (2015) Development of reproducible assays for polygalacturonase and pectinase. Enzyme Microbial Technol 72:42–48

    CAS  Google Scholar 

  30. Silva MF, Rigo D, Mossi V, Dallago RM, Henrick P, de Oliveira Kuhn G, Dalla Rosa C, Oliveira D, Oliveira JV, Treichel H (2013) Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioprod Process 91:54–59

    CAS  Google Scholar 

  31. Poorna V, Kulkarni P (1995) A study of inulinase production in Aspergillus niger using fractional factorial design. Biores Technol 54:315–320

    CAS  Google Scholar 

  32. Yewale T, Singhal RS, Vaidya AA (2013) Immobilization of inulinase from Aspergillus niger NCIM 945 on chitosan and its application in continuous inulin hydrolysis. Biocatal Agric Biotechnol 2:96–101

    Google Scholar 

  33. Laowklom N, Chantanaphan R, Pinphanichakarn P (2012) Production, purification and characterization of inulinase from a newly isolated Streptomyces sp. CP01. Nat Resour 3:137

    Google Scholar 

  34. Naidoo K, Ayyachamy M, Permaul K, Singh S (2009) Enhanced fructooligosaccharides and inulinase production by a Xanthomonas campestris pv. phaseoli KM 24 mutant. Bioprocess Biosyst Eng 32:689–695

    CAS  PubMed  Google Scholar 

  35. Sheng J, Chi Z, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144:111–121

    CAS  PubMed  Google Scholar 

  36. Sheng J, Chi Z, Yan K, Wang X, Gong F, Li J (2009) Use of response surface methodology for optimizing process parameters for high inulinase production by the marine yeast Cryptococcus aureus G7a in solid-state fermentation and hydrolysis of inulin. Bioprocess Biosyst Eng 32:333–339

    CAS  PubMed  Google Scholar 

  37. Canli O, Tasar GE, Taskin M (2013) Inulinase production by Geotrichum candidum OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicol Ind Health 29:704–710

    CAS  PubMed  Google Scholar 

  38. Liu G-L, Fu G-Y, Chi Z, Chi Z-M (2014) Enhanced expression of the codon-optimized exo-inulinase gene from the yeast Meyerozyma guilliermondii in Saccharomyces sp. W0 and bioethanol production from inulin. Appl Microbiol Biotechnol 98:9129–9138

    CAS  PubMed  Google Scholar 

  39. Singh R, Dhaliwal R, Puri M (2006) Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Process Biochem 41:1703–1707

    CAS  Google Scholar 

  40. Jain SC, Jain P, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using Dahlia tuber extract. Braz J Microbiol 43:62–69

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalil SJ, Suzan R, Maugeri F, Rodrigues MI (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264

    CAS  PubMed  Google Scholar 

  42. Gong F, Sheng J, Chi Z, Li J (2007) Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol 34:179–185

    CAS  PubMed  Google Scholar 

  43. Silva-Santisteban BOY, Converti A, Maugeri Filho F (2009) Effects of carbon and nitrogen sources and oxygenation on the production of inulinase by Kluyveromyces marxianus. Appl Biochem Biotechnol 152:249–261

    CAS  PubMed  Google Scholar 

  44. Gou Y, Li J, Zhu J, Xu W, Gao J (2015) Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions. Braz J Microbiol 46:911–920

    PubMed  PubMed Central  Google Scholar 

  45. Gong F, Zhang T, Chi Z, Sheng J, Li J, Wang X (2008) Purification and characterization of extracellular inulinase from a marine yeast Pichia guilliermondii and inulin hydrolysis by the purified inulinase. Biotechnol Bioprocess Eng 13:533–539

    CAS  Google Scholar 

  46. Yuan B, Hu N, Sun J, Wang S-A, Li F-L (2012) Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Appl Microbiol Biotechnol 96:1517–1526

    CAS  PubMed  Google Scholar 

  47. Zhou J, Peng M, Zhang R, Li J, Tang X, Xu B, Ding J, Gao Y, Ren J, Huang Z (2015) Characterization of Sphingomonas sp. JB13 exo-inulinase: a novel detergent-, salt-, and protease-tolerant exo-inulinase. Extremophiles 19:383–393

    CAS  PubMed  Google Scholar 

  48. Hu N, Yuan B, Sun J, Wang S-A, Li F-L (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95:1359–1368

    CAS  PubMed  Google Scholar 

  49. Wang D, Li F-L, Wang S-A (2016) Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. Biotechnol Biofuels 9:96. https://doi.org/10.1186/s13068-016-0511-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, Srinophakun P, Chisti Y (2007) Production of fructose from inulin using mixed inulinases from Aspergillus niger and Candida guilliermondii. World J Microbiol Biotechnol 23:543–552

    CAS  Google Scholar 

  51. Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F (2015) Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels 8:1

    Google Scholar 

  52. Chen G-J, Yang J-K, Peng X-B, He J-R (2016) High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin. J Mol Catal B Enzym 133:S543–S551

    Google Scholar 

  53. Torabizadeh H, Habibi-Rezaei M, Safari M, Moosavi-Movahedi AA, Sharifizadeh A, Azizian H, Amanlou M (2011) Endo-inulinase stabilization by pyridoxal phosphate modification: a kinetics, thermodynamics, and simulation approach. Appl Biochem Biotechnol 165:1661–1673

    CAS  PubMed  Google Scholar 

  54. Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus. Biores Technol 97:894–902

    CAS  Google Scholar 

  55. Flores-Gallegos AC, Contreras-Esquivel JC, CbN Aguilar (2015) Comparative study of fungal strains for thermostable inulinase production. J Biosci Bioeng 119:421–426

    CAS  PubMed  Google Scholar 

  56. Tanaka A, Hoshino E (2002) Calcium-binding parameter of Bacillus amyloliquefaciens α-amylase determined by inactivation kinetics. Biochem J 364:635–639

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marin E, Sanchez L, Perez M, Puyol P, Calvo M (2003) Effect of heat treatment on bovine lactoperoxidase activity in skim milk: kinetic and thermodynamic analysis. J Food Sci 68:89–93

    CAS  Google Scholar 

  58. Anema SG, McKenna AB (1996) Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. J Agric Food Chem 44:422–428

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Akdeniz University Research Foundation [Grant number: FDK-2019-4761].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Turhan.

Ethics declarations

Conflict of interest

All the authors in this study mutually agree for submitting our manuscript to Biochemical Engineering Journal and declare that they have no conflict of interest in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germec, M., Turhan, I. Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization. Bioprocess Biosyst Eng 42, 1993–2005 (2019). https://doi.org/10.1007/s00449-019-02192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02192-9

Keywords

Navigation