Skip to main content

Advertisement

Log in

Effect of static magnetic field on morphology and growth metabolism of Flavobacterium sp. m1-14

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Increasing evidence shows that static magnetic fields (SMFs) can affect microbial growth metabolism, but the specific mechanism is still unclear. In this study, we have investigated the effect of moderate-strength SMFs on growth and vitamin K2 biosynthesis of Flavobacterium sp. m1-14. First, we designed a series of different moderate-strength magnetic field intensities (0, 50, 100, 150, 190 mT) and exposure times (0, 24, 48, 72, 120 h). With the optimization of static magnetic field intensity and exposure time, biomass and vitamin K2 production significantly increased compared to control. The maximum vitamin K2 concentration and biomass were achieved when exposed to 100 mT SMF for 48 h; compared with the control group, they increased by 71.3% and 86.8%, respectively. Interestingly, it was found that both the cell viability and morphology changed significantly after SMF treatment. Second, the adenosine triphosphate (ATP) and glucose-6-phosphate dehydrogenase (G6PDH) metabolism is more vigorous after exposed to 100 mT SMF. This change affects the cell energy metabolism and fermentation behavior, and may partially explain the changes in bacterial biomass and vitamin K2 production. The results show that moderate-strength SMFs may be a promising method to promote bacterial growth and secondary metabolite synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carbonell MV, Martinez E, Amaya JM (2000) Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. J Bioelectr 19(1):121–128

    Google Scholar 

  2. Flórez M, Carbonell MV, Martínez E (2004) Early sprouting and first stages of growth of rice seeds exposed to a magnetic field. J Bioelectr 23(2):10

    Google Scholar 

  3. Pinzon-Rodriguez A, Muheim R (2017) Zebra finches have a light-dependent magnetic compass similar to migratory birds. J Exp Biol 220(7):1202–1209

    Article  PubMed  Google Scholar 

  4. Yao-Ching H, Jia-Huey L, Huang-Meng C, Guewha Steven H (2010) Effects of static magnetic fields on the development and aging of Caenorhabditis elegans. J Exp Biol 213(6):2079–2085

    Google Scholar 

  5. Loghmannia J, Heidari B, Rozati SA, Kazemi S (2015) The physiological responses of the Caspian kutum (Rutilus frisii kutum) fry to the static magnetic fields with different intensities during acute and subacute exposures. Ecotoxicol Environ Saf 111(111):215–219

    Article  CAS  PubMed  Google Scholar 

  6. Bajpai I, Saha N, Basu B (2012) Moderate intensity static magnetic field has bactericidal effect on E. coli and S. epidermidis on sintered hydroxyapatite. J Biomed Mater Res Part B 100B(5):1206–1217

    Article  CAS  Google Scholar 

  7. Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dacha M (2004) Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res Genet Toxicol Environ Mutagen 561(1–2):53–62. https://doi.org/10.1016/j.mrgentox.2004.03.009

    Article  CAS  Google Scholar 

  8. El May A, Snoussi S, Ben Miloud N, Maatouk I, Abdelmelek H, Ben Aissa R, Landoulsi A (2009) Effects of static magnetic field on cell growth, viability, and differential gene expression in Salmonella. Foodborne Pathog Dis 6(5):547–552. https://doi.org/10.1089/fpd.2008.0244

    Article  CAS  PubMed  Google Scholar 

  9. Santos LO, Alegre RM, Garcia-Diego C, Cuellar J (2010) Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem 45(8):1362–1367. https://doi.org/10.1016/j.procbio.2010.05.008

    Article  CAS  Google Scholar 

  10. Da Motta MA, Muniz JBF, Schuler A, Da Motta M (2004) Static magnetic fields enhancement of Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Prog 20(1):393–396. https://doi.org/10.1021/bp034263j

    Article  CAS  PubMed  Google Scholar 

  11. Konopacka A, Rakoczy R, Konopacki M (2019) The effect of rotating magnetic field on bioethanol production by yeast strain modified by ferrimagnetic nanoparticles. J Magn Magn Mater 473:176–183. https://doi.org/10.1016/j.jmmm.2018.10.053

    Article  CAS  Google Scholar 

  12. Deamici KM, Santos LO, Costa JAV (2018) Magnetic field action on outdoor and indoor cultures of Spirulina: evaluation of growth, medium consumption and protein profile. Bioresour Technol 249:168–174. https://doi.org/10.1016/j.biortech.2017.09.185

    Article  CAS  PubMed  Google Scholar 

  13. Deamici KM, Cardias BB, Costa JAV, Santos LO (2016) Static magnetic fields in culture of Chlorella fusca: bioeffects on growth and biomass composition. Process Biochem 51(7):912–916. https://doi.org/10.1016/j.procbio.2016.04.005

    Article  CAS  Google Scholar 

  14. Tani Y, Asahi S, Yamada H (1986) Menaquinone (vitamin-K2)-6 production by mutants of Flavobacterium meningosepticum. J Nutr Sci Vitaminol 32(2):137–145

    Article  CAS  PubMed  Google Scholar 

  15. Taguchi H, Kita S, Tani Y (1991) Enzymatic alteration in the shikimate pathway during derivation of menaquinone-4-producing mutants of Flavobacterium sp. 238-7. Agric Biol Chem 55(3):769–773. https://doi.org/10.1080/00021369.1991.10870680

    Article  CAS  Google Scholar 

  16. Fang X, Yang Q, Liu H, Wang P, Wang L, Zheng Z, Zhao G (2019) Effects of a combined processing technology involving ultrasound and surfactant on the metabolic synthesis of vitamin K2 by Flavobacterium sp. M1–14. Chem Eng Process Process Intensif 135:227–235. https://doi.org/10.1016/j.cep.2018.09.010

    Article  CAS  Google Scholar 

  17. Wei H, Zhao G, Liu H, Wang H, Ni W, Wang P, Zheng Z (2018) A simple and efficient method for the extraction and separation of menaquinone homologs from wet biomass of Flavobacterium. Bioprocess Biosyst Eng 41(1):107–113. https://doi.org/10.1007/s00449-017-1851-6

    Article  CAS  PubMed  Google Scholar 

  18. Zamani S, Hoseini AZ, Namin AM (2019) Glucose-6-phosphate dehydrogenase (G6PD) activity can modulate macrophage response to Leishmania major infection. Int Immunopharmacol 69:178–183. https://doi.org/10.1016/j.intimp.2019.01.028

    Article  CAS  PubMed  Google Scholar 

  19. Hideyuki O, Hiroyuki I, Yu O, Toshiaki O, Hozumi T (2012) The effects of moderate-intensity gradient static magnetic fields on nerve conduction. Bioelectromagnetics 33(6):518–526

    Article  Google Scholar 

  20. Lei Z, Hou Y, Li Z, Ji X, Wang Z, Wang H, Tian X, Yu F, Yang Z, Li P (2017) 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. eLife 6:e22911

    Article  Google Scholar 

  21. Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35(4):307–315

    Article  CAS  PubMed  Google Scholar 

  22. Rosen AD, Chastney EE (2010) Effect of long term exposure to 0.5 T static magnetic fields on growth and size of GH3 cells. Bioelectromagnetics 30(2):114–119

    Article  Google Scholar 

  23. Xin Z, Yarema K, An X (2017) Impact of static magnetic fields (SMFs) on cells

  24. Katherine S, Balin AK, Allen RG (2011) Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics 32(2):140–147

    Article  Google Scholar 

  25. Chionna A, Dwikat M, Panzarini E, Tenuzzo B, Carlà EC, Verri T, Pagliara P, Abbro L, Dini L (2003) Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem 47(4):299–308

    Article  CAS  PubMed  Google Scholar 

  26. Moore RL (1979) Biological effects of magnetic-fields with microorganisms. Can J Microbiol 25(10):1145–1151. https://doi.org/10.1139/m79-178

    Article  CAS  PubMed  Google Scholar 

  27. Morrow AC, Dunstan RH, King BV, Roberts TK (2007) Metabolic effects of static magnetic fields on Streptococcus pyogenes. Bioelectromagnetics 28(6):439–445. https://doi.org/10.1002/bem.20332

    Article  CAS  PubMed  Google Scholar 

  28. Egami S, Naruse Y, Watarai H (2010) Effect of static magnetic fields on the budding of yeast cells. Bioelectromagnetics 31(8):622–629. https://doi.org/10.1002/bem.20599

    Article  PubMed  Google Scholar 

  29. Rosen AD, Chastney EE (2009) Effect of long term exposure to 0.5 T static magnetic fields on growth and size of GH3 cells. Bioelectromagnetics 30(2):114–119. https://doi.org/10.1002/bem.20452

    Article  PubMed  Google Scholar 

  30. Kobayashi T, Dedem G, Ven Moo-Young M (2010) Oxygen transfer into mycelial pellets. Biotechnol Bioeng 15(1):27–45

    Article  Google Scholar 

  31. Sun X, Wu H, Zhao G, Li Z, Wu X, Liu H, Zheng Z (2018) Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess Biosyst Eng 41(2):1–10

    Google Scholar 

  32. Lucia P, Roberta S, Emanuela P, Paola C, Antonella A, Sabrina Z, Alessandra Z, Vilberto S (2012) Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields on Tuber borchii mycelium. Revue Canadienne De Microbiologie 58(58):1174–1182

    Google Scholar 

  33. Blanquer-Rossello MDM, Oliver J, Sastre-Serra J, Valle A, Roca P (2016) Leptin regulates energy metabolism in MCF-7 breast cancer cells. Int J Biochem Cell Biol 72:18–26. https://doi.org/10.1016/j.biocel.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  34. Santoro M, Guido C, De Amicis F, Sisci D, Cione E, Vincenza D, Dona A, Panno ML, Aquila S (2016) Bergapten induces metabolic reprogramming in breast cancer cells. Oncol Rep 35(1):568–576. https://doi.org/10.3892/or.2015.4327

    Article  CAS  PubMed  Google Scholar 

  35. Buchachenko AL, Kuznetsov DA (2008) Magnetic field affects enzymatic ATP synthesis. J Am Chem Soc 130(39):12868–12869

    Article  CAS  PubMed  Google Scholar 

  36. Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang W, Wu R, Wu L, Wu Y (2011) Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics 32(2):94–101

    Article  CAS  PubMed  Google Scholar 

  37. Aydin B (2017) Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH-generating enzymes in acrylamide treated rat brain. Biomedicine Pharmacother Biomedecine pharmacotherapie 87:476–481. https://doi.org/10.1016/j.biopha.2016.12.124

    Article  CAS  Google Scholar 

  38. Kahani SA, Yagini Z (2014) A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorg Chem Appl 2014(4):384–984

    Google Scholar 

  39. Mirabello G, Lenders JJ, Sommerdijk NA (2016) Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 45(18):5085–5106. https://doi.org/10.1039/c6cs00432f

    Article  CAS  PubMed  Google Scholar 

  40. Wiltschko R, Wiltschko W (2012) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A 199(2):89–98. https://doi.org/10.1007/s00359-012-0769-3

    Article  Google Scholar 

  41. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Braganza LF, Blott BH, Melville TJ (1984) The superdiamagnetic effect of magnetic fields on one and two component multilamellar liposomes. BBA Gen Subj 801(1):66–75

    Article  CAS  Google Scholar 

  43. De NM, Cordisco S, Cerella C, Albertini MC, D'Alessio M, Accorsi A, Bergamaschi A, Magrini A, Ghibelli L (2010) Magnetic fields protect from apoptosis via redox alteration. Ann N Y Acad Sci 1090(1):59–68

    Google Scholar 

  44. Rosen AD (2003) Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24(7):517–523. https://doi.org/10.1002/bem.10124

    Article  CAS  PubMed  Google Scholar 

  45. Braganza LF, Blott BH, Coe TJ, Melville D (1984) The superdiamagnetic effect of magnetic-fields on one and two component multilamellar liposomes. Biochem Biophys Acta 801(1):66–75. https://doi.org/10.1016/0304-4165(84)90213-7

    Article  CAS  PubMed  Google Scholar 

  46. Bhalerao S, Clandinin TR (2012) Vitamin K-2 takes charge. Science 336(6086):1241–1242. https://doi.org/10.1126/science.1223812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Research and Development Plan of Anhui Province (1804b06020342), Natural Science Foundation of Anhui Province (1608085QC46), Major Projects of Science and Technology of Anhui Province (17030801036), and “Development and Demonstration of Vitamin K2 Functional Food” Anhui Provincial Natural Science Foundation (1908085MB43).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genhai Zhao or Zhiming Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hengfang Tang and Peng Wang contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Wang, P., Wang, H. et al. Effect of static magnetic field on morphology and growth metabolism of Flavobacterium sp. m1-14. Bioprocess Biosyst Eng 42, 1923–1933 (2019). https://doi.org/10.1007/s00449-019-02186-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02186-7

Keywords

Navigation