Skip to main content

Advertisement

Log in

Biogas yields and composition from oil-extracted halophilic algae residues in conventional biogas plants operated at high salinities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

CO2-induced climate change drives the development of renewable processes for industrial products. Algae processes can actively fix and convert CO2 into value adding products, such as oils. Algae lipids hence counteract climate change and provide access to renewable commodities. In this context, valorization of algal residues remaining after oil extraction is a challenge for the emerging cyclic bioeconomy. This study focuses on the valorization of oil-extracted algae residues derived from the halophilic strain Scenedesmus obliquus via anaerobic digestion. We examined the effect of prior oil extraction on microbial digestibility and increasing salt content in the substrate with regard to biogas yield and composition. Our cumulative data demonstrate that the supercritical CO2 oil extraction acts as a physical pretreatment that facilitates enhanced hydrolysis of both polymeric call wall carbohydrates and cellular proteins, providing methane yields of 213.2 LN kg−1 VS day−1. Methane yields were 20% higher than literature values obtained with the same algae strain in the absence of prior oil extraction. We obtained these superior results albeit all lipids and nonpolar proteins had been extracted from the biogas substrate. Our data indicate that continuous anaerobic digestion without loss of fermentation efficiency is feasible up to a salt concentration of 2% w/v, if conventional, agricultural biogas plants are gradually adapted to the salt content of the substrate. Monofermentation of the investigated oil-extracted algae residue is technically feasible at loading rates of 1.5 kg VS m−3 day−1, but a supplementation with carbohydrate rich biomass would prove beneficial to alleviate ammonia inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bellou S, Baeshen MN, Elazzazy AM et al (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Esakkimuthu S, Krishnamurthy V, Govindarajan R et al (2016) Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy 88:126–134. https://doi.org/10.1016/j.biombioe.2016.03.019

    Article  CAS  Google Scholar 

  3. Gallego R, Montero L, Cifuentes A et al (2018) Green extraction of bioactive compounds from microalgae. J Anal Test 2(2):109–123. https://doi.org/10.1007/s41664-018-0061-9

    Article  Google Scholar 

  4. Richardson J, Johnson M, Joe L (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res. https://doi.org/10.1016/j.algal.2012.04.001

    Article  Google Scholar 

  5. Mooij PR, Stouten GR, van Loosdrecht MCM et al (2015) Ecology-based selective environments as solution to contamination in microalgal cultivation. Curr Opin Biotechnol 33:46–51. https://doi.org/10.1016/j.copbio.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Lorenzen J, Igl N, Tippelt M et al (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40(6):911–918. https://doi.org/10.1007/s00449-017-1755-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adamietz T, Jurkowski W, Adolph J, Brück T (2019) Batch and continuous biogas fermentation of the fresh water algae chlorella vulgaris-detailed process analysis. J Bioprocess Biotech 8(5):1–8. https://doi.org/10.4172/2155-9821.1000338

    Article  Google Scholar 

  8. Ogata Y, Ishigaki T, Nakagawa M et al (2016) Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: a lab-scale model study. Biotechnol Rep 10:111–116. https://doi.org/10.1016/j.btre.2016.04.004

    Article  Google Scholar 

  9. Gebauer R (2004) Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production. Biores Technol 93(2):155–167. https://doi.org/10.1016/j.biortech.2003.10.024

    Article  CAS  Google Scholar 

  10. Anwar N, Wang W, Zhang J et al (2016) Effect of sodium salt on anaerobic digestion of kitchen waste. Water Sci Technol 73(8):1865–1871. https://doi.org/10.2166/wst.2016.035

    Article  CAS  PubMed  Google Scholar 

  11. Jayathilakan K, Sultana K, Radhakrishna K et al (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49(3):278–293. https://doi.org/10.1007/s13197-011-0290-7

    Article  CAS  PubMed  Google Scholar 

  12. Zeb I, Ma J, Mehboob F et al (2019) Kinetic and microbial analysis of methane production from dairy wastewater anaerobic digester under ammonia and salinity stresses. J Clean Prod 219:797–808. https://doi.org/10.1016/j.jclepro.2019.01.295

    Article  CAS  Google Scholar 

  13. Lee DH, Behera SK, Kim JW et al (2009) Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Manag 29(2):876–882. https://doi.org/10.1016/j.wasman.2008.06.033

    Article  CAS  PubMed  Google Scholar 

  14. de Vrieze J, Coma M, Debeuckelaere M et al (2016) High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. Water Res 98:293–301. https://doi.org/10.1016/j.watres.2016.04.035

    Article  CAS  PubMed  Google Scholar 

  15. de Baere LA, Devocht M, van Assche P et al (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res 18(5):543–548. https://doi.org/10.1016/0043-1354(84)90201-X

    Article  Google Scholar 

  16. Feijoo G, Soto M, Méndez R et al (1995) Sodium inhibition in the anaerobic digestion process: antagonism and adaptation phenomena. Enzyme Microb Technol 17(2):180–188. https://doi.org/10.1016/0141-0229(94)00011-F

    Article  CAS  Google Scholar 

  17. Mussgnug JH, Klassen V, Schlüter A et al (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56. https://doi.org/10.1016/j.jbiotec.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  18. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  CAS  PubMed  Google Scholar 

  19. Micolucci F, Gottardo M, Bolzonella D et al (2014) Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int J Hydrogen Energy 39(31):17563–17572. https://doi.org/10.1016/j.ijhydene.2014.08.136

    Article  CAS  Google Scholar 

  20. Klein R, Slaný V, Krčálová E (2018) Conductivity measurement for control of a biogas plant. Acta Univ Agric Silvic Mendelianae Brun 66(5):1151–1156. https://doi.org/10.11118/actaun201866051151

    Article  Google Scholar 

  21. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48(5–6):901–911. https://doi.org/10.1016/j.procbio.2013.04.012

    Article  CAS  Google Scholar 

  22. Ozalp G, Gomec CY, Ozturk I et al (2004) Effect of high salinity on anaerobic treatment of low strength effluents. Water Sci Technol 48(11–12):207–212. https://doi.org/10.2166/wst.2004.0842

    Article  Google Scholar 

  23. Miura T, Kita A, Okamura Y et al (2014) Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity. Biores Technol 169:362–366. https://doi.org/10.1016/j.biortech.2014.07.013

    Article  CAS  Google Scholar 

  24. Biogas Forum (2019) https://www.alb-bayern.de/De/themen-aktuelles_Home

  25. Barka A, Blecker C (2016) Microalgae as a potential source of single-cell proteins. A review. Biotechnol Agron Soc Environ 20(3):427–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas B. Brück.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamietz, T., Jurkowski, W., Adolph, J. et al. Biogas yields and composition from oil-extracted halophilic algae residues in conventional biogas plants operated at high salinities. Bioprocess Biosyst Eng 42, 1915–1922 (2019). https://doi.org/10.1007/s00449-019-02185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02185-8

Keywords

Navigation