Skip to main content

Advertisement

Log in

Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A rational enhancement of kinetic resolution process for producing (S)-N-(2-ethyl-6-methylphenyl) alanine from racemic methyl ester using lipase B from Candida antarctica (CalB) was investigated. With the benefit results that lipase CalB-catalyzed reactions can be effectively regulated using amino acids (such as histidine and lysine) as additives, CalBs modified (mCalBs) by n-histidines at the N terminal and n-lysines at the C terminal were constructed and expressed. The results show that both soluble and precipitated mCalBs can effectively catalyze the hydrolysis reaction without adding any extra additives. The enantioselective ratio (E value) of soluble and precipitated mCalBs could be improved from 12.1 to 20.3, which were higher than that (E value was only 10.2) of commercial Novozym 435 (immobilized CalB). The study indicated that the amino acid-rich molecules introduced on lipase CalB can produce positive effects on enantioselectivity of enzyme. It provides unusual ideas for reasonable regulation of enzyme-catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Davis BG, Boyer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18:618–640

    Article  CAS  Google Scholar 

  2. Hu L, Ren Y, Ramström O (2015) Chirality control in enzyme-catalyzed dynamic kinetic resolution of 1,3-oxathiolanes. J Org Chem 80:8478–8481

    Article  CAS  Google Scholar 

  3. Turner NJ (2010) Deracemisation methods. Curr Opin Chem Biol 14:115–121

    Article  CAS  Google Scholar 

  4. Kucher OV, Kolodiazhnaya AO, Smolii OB, Prisuazhnyk DV, Tolmacheva KA, Zaporozhets OA, Moroz YS, Mykhailiuk PK, Tolmachev AA (2014) Enzyme-catalyzed kinetic resolution of 2,2,2-trifluoro-1-(heteroaryl)ethanols: experimental and docking studies. Eur J Org Chem 2014:7692–7698

    Article  CAS  Google Scholar 

  5. Turner NJ (2004) Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr Opin Chem Biol 8:114–119

    Article  CAS  Google Scholar 

  6. Reetz MT (2013) Biocatalysis in organic chemistry and biotechnology: past, present, and future. J Am Chem Soc 135:12480–12496

    Article  CAS  Google Scholar 

  7. Ferreira EA, Rodezno SVA, Omori ÁT, Cunha RLOR (2019) A study on the enzyme catalysed enantioselective hydrolysis of methyl 2-methyl-4-oxopentanoate, a precursor of chiral γ-butyrolactones. Biocatal Biotransform 37:115–123

    Article  CAS  Google Scholar 

  8. Xue YP, Cao CH, Zheng YG (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47:1516–1561

    Article  CAS  Google Scholar 

  9. Wang R, Hu D, Zong X, Li JP, Ding L, Wu MC, Li JF (2017) Enantioconvergent hydrolysis of racemic styrene oxide at high concentration by a pair of novel epoxide hydrolases into (R)-phenyl-1,2-ethanediol. Biotechnol Lett 39:1917–1923

    Article  CAS  Google Scholar 

  10. Panić M, Delač D, Roje M, Radojčić Redovniković I, Cvjetko Bubalo M (2019) Green asymmetric reduction of acetophenone derivatives: saccharomyces cerevisiae and aqueous natural deep eutectic solvent. Biotechnol Lett 41:253–262

    Article  Google Scholar 

  11. Mathew S, Nadarajan SP, Sundaramoorthy U, Jeon H, Chung T, Yun H (2017) Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnol Lett 39:535–543

    Article  CAS  Google Scholar 

  12. Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed 54:3351–3367

    Article  CAS  Google Scholar 

  13. Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT (2015) Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution. Angew Chem Int Ed 54:12410–12415

    Article  CAS  Google Scholar 

  14. Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E (2016) Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J Mol Catal B Enzym 130:32–39

    Article  CAS  Google Scholar 

  15. Reetz MT (2019) Directed evolution of artificial metalloenzymes: a universal means to tune the selectivity of transition metal catalysts? Acc Chem Res 52:336–344

    Article  CAS  Google Scholar 

  16. Davidi D, Longo LM, Jabłońska J, Milo R, Tawfik DS (2018) A bird’s-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem Rev 118:8786–8797

    Article  CAS  Google Scholar 

  17. Priyanka P, Tan Y, Kinsella GK, Henehan GT, Ryan BJ (2019) Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnol Lett 41:203–220

    Article  CAS  Google Scholar 

  18. Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, Parker EJ, Schipper LA (2016) On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55:1681–1688

    Article  CAS  Google Scholar 

  19. Naushad M, Alothman ZA, Khan AB, Ali M (2012) Effect of ionic liquid on activity, stability, and structure of enzymes: a review. Int J Biol Macromol 51:555–560

    Article  CAS  Google Scholar 

  20. Tsai SW (2016) Enantiopreference of Candida antarctica lipase B toward carboxylic acids: substrate models and enantioselectivity thereof. J Mol Catal B Enzym 127:98–116

    Article  CAS  Google Scholar 

  21. Theil F (2000) Enhancement of selectivity and reactivity of lipases by additives. Tetrahedron 56:2905–2919

    Article  CAS  Google Scholar 

  22. Liang YR, Wu Q, Lin XF (2017) Effect of additives on the selectivity and reactivity of enzymes. Chem Rec 17:90–121

    Article  CAS  Google Scholar 

  23. Acevedo-Rocha CG, Reetz MT (2012) Tuning lipase activity with perfluoro carboxylic acids as additives. Catal Sci Technol 2:1553–1555

    Article  CAS  Google Scholar 

  24. Zheng L, Zhang S, Yu X, Zhao L, Gao G, Yang X, Duan H, Cao S (2006) Enhancement of enantioselectivity in lipase-catalyzed resolution of N-(2-ethyl-6-methylphenyl)alanine by additives. J Mol Catal B Enzym 38:17–23

    Article  CAS  Google Scholar 

  25. James JJ, Lakshmi BS, Raviprasad V, Ananth MJ, Kangueane P, Gautam P (2003) Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase. Protein Eng Des Sel 16:1017–1024

    Article  CAS  Google Scholar 

  26. Kitamoto Y, Kuruma Y, Suzuki K, Hattori T (2015) Effect of solvent polarity on enantioselectivity in Candida Antarctica lipase B catalyzed kinetic resolution of primary and secondary alcohols. J Org Chem 80:521–527

    Article  CAS  Google Scholar 

  27. Zhou X, Han Y, Lv Z, Tian X, Li H, Xie P, Zheng L (2017) Simultaneously achieve soluble expression and biomimetic immobilization of Candida antarctica lipase B by introducing polyamine tags. J Biotechnol 249:1–9

    Article  CAS  Google Scholar 

  28. Zheng L, Zhang S, Feng Y, Cao S, Ma J, Zhao L, Gao G (2004) Enantioselective lipase-catalyzed kinetic resolution of N-(2-ethyl-6-methylphenyl)alanine. J Mol Catal B Enzym 31:117–122

    Article  CAS  Google Scholar 

  29. Li Y, Wei L, Zhu Z, Li S, Wang J, Xin Q, Wang H, Lu F, Qin H (2017) Rational design to change product specificities and thermostability of cyclodextrin glycosyltransferase from Paenibacillus sp. RSC Adv 23:13726–13732

    Article  Google Scholar 

  30. Zhang Y, Jiang J, Li M, Gao P, Zhang G, Shi L, Dong C, Shuang S (2017) Green synthesis of gold nanoparticles with pectinase: a highly selective and ultra-sensitive colorimetric assay for Mg2+. Plasmonics 12:717–727

    Article  CAS  Google Scholar 

  31. He K, Zou Z, Hu Y, Yang Y, Xiao Y, Gao P, Li X, Ye X (2016) Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system. J Sep Sci 39:703–708

    Article  CAS  Google Scholar 

  32. Cai Y, Wu Q, Xiao YM, Lv DS, Lin XF (2006) Hydrolase-catalyzed Michael addition of imidazoles to acrylic monomers in organic medium. J Biotechnol 121:330–337

    Article  CAS  Google Scholar 

  33. Yan S, Yao L, Kang B, Lee JY (2016) Solvent effect on hydrogen bonded Tyr···Asp···Arg triads: enzymatic catalyzed model system. Comput Biol Chem 65:140–147

    Article  CAS  Google Scholar 

  34. Tian X, Wu K, Tao J, Zheng L, Zhang S, Cao S (2012) Enhancing lipase-catalyzed hydrolysis by adding macrocyclic tetraamines. J Mol Catal B Enzym 74:83–88

    Article  CAS  Google Scholar 

  35. Larsen MW, Bornscheuer UT, Hult K (2008) Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expres Purif 62:90–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the National Natural Science Foundation of China (Grant Nos. 21672081 and 21372098), Jilin Provincial Science and Technology Sustentation Program (Grant Nos. 20160204004SF and 20190201165JC), Jilin Province Development and Reform Commission (Grant No. 2016C047-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangyu Zheng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhou, X. & Zheng, L. Rational enhancement of enzyme-catalyzed enantioselective reaction by construction of recombinant enzymes based on additive strategy. Bioprocess Biosyst Eng 42, 1739–1746 (2019). https://doi.org/10.1007/s00449-019-02170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02170-1

Keywords