Skip to main content
Log in

Ethanol production from water hyacinth (Eichhornia crassipes) hydrolysate by hyper-thermal acid hydrolysis, enzymatic saccharification and yeasts adapted to high concentration of xylose

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Water hyacinth (Eichhornia crassipes) was used as a feedstock for ethanol production. The optimal hyper-thermal (HT) acid hydrolysis conditions were 8% (w/v) slurry content, 200 mM H2SO4, at 160 °C for 20 min and enzymatic saccharification for 48 h using an enzyme mixture of 20 units/mL Viscozyme L and Cellic C Tec2. After pretreatment, 48.2 g/L monosaccharides were obtained. Fermentation was conducted with wild and adapted Saccharomyces cerevisiae, Pichia stipitis and Candida lusitaniae. Wild-type S. cerevisiae, P. stipitis, and C. lusitaniae produced 15.3, 19.5 and 22.7 g/L of ethanol, respectively. Adaptive evolution was carried out on 6% (w/v) xylose. S. cerevisiae, P. sipitis and C. lusitaniae adapted to xylose produced 15.3, 21.4 and 23.9 g/L of ethanol with YEtOH of 0.32, 0.44 and 0.49, respectively. These results indicate that water hyacinth has potential as a feed stock for ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Orts WJ, McMahan CM (2016) Biorefinery developments for advanced biofuels from a sustainable array of biomass feedstocks: survey of recent biomass conversion research from agricultural research service. Bio Energy Res 9:430–446

    CAS  Google Scholar 

  2. Manfredi AP, Ballesteros I, Sáez F et al (2018) Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresour Technol 260:241–247

    Article  CAS  PubMed  Google Scholar 

  3. Madian HR, Sidkey NM, Abo Elsoud MM et al (2019) Bioethanol production from water hyacinth hydrolysate by Candida tropicalis Y-26. Arab J Sci Eng 44:33–41

    Article  CAS  Google Scholar 

  4. Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresour Technol 99:2495–2500

    Article  CAS  PubMed  Google Scholar 

  5. Ganguly A, Chatterjee PK, Dey A (2012) Studies on ethanol production from water hyacinth—a review. Renew Sustain Energy Rev 16:966–972

    Article  CAS  Google Scholar 

  6. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzmn CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    Article  CAS  PubMed  Google Scholar 

  7. Sukwong P, Ra CH, Sunwoo IY, Tantratian S, Jeong G-T, Kim SK (2018) Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose. Bioprocess Biosyst Eng 41:953–960

    Article  CAS  PubMed  Google Scholar 

  8. Ra CH, Nguyen TH, Jeong GT, Kim SK (2016) Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresour Technol 209:66–72

    Article  CAS  PubMed  Google Scholar 

  9. Moysés D, Reis V, Almeida J, de Moraes LMP, Toress FAG (2016) Xylose Fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Günan Yücel H, Aksu Z (2015) Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–799

    Article  CAS  Google Scholar 

  11. Nguyen TH, Ra CH, Sunwoo IY et al (2017) Bioethanol production from soybean residue via separate hydrolysis and fermentation. Appl Biochem Biotechnol 184:1–11

    Google Scholar 

  12. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406

    Article  CAS  PubMed  Google Scholar 

  13. Antonetti C, Licursi D, Fulignati S, Valentini G, Galletti AMR (2016) New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6:196

    Article  CAS  Google Scholar 

  14. Ra CH, Choi JG, Kang CH, Sunwoo IY, Jeong GT, Kim SK (2015) Thermal acid hydrolysis pretreatment, enzymatic saccharification and ethanol fermentation from red seaweed, Gracilaria verrucosa. Microbia Biotechnol Lett 43:9–15

    Article  CAS  Google Scholar 

  15. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225

    Article  CAS  Google Scholar 

  16. Ahn DJ, Kim SK, Yun HS (2012) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst Eng 35:35–41

    Article  CAS  PubMed  Google Scholar 

  17. Hanly TJ, Henson MA (2013) Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures. Biotechnol Biofuel 6:44–59

    Article  CAS  Google Scholar 

  18. Passoth V, Zimmermann M, Klinner U (1996) Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 57:201–212

    Article  PubMed  Google Scholar 

  19. Maleszka R, Wang PY, Schneider H (1982) Yeasts that ferment d-cellobiose as well as d-xylose. Biotechnol Lett 4:133–136

    Article  CAS  Google Scholar 

  20. Kuper M, Toirkens M, Diderich J, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting strain. FEMS Yeast Res 5:925–934

    Article  CAS  Google Scholar 

  21. Runquist D, Hahn-Hagerdal B, Radstrom P (2010) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou H, Cheng J, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622

    Article  CAS  PubMed  Google Scholar 

  23. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotehcnol Lett 30:1515–1524

    Article  CAS  Google Scholar 

  24. Klinner U, Fluthgraf S, Freese S, Passoth V (2005) Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbiol Biotechnol 67:247–253

    Article  CAS  PubMed  Google Scholar 

  25. El Asli A, Boles E, Hollenberg CP, Errami M (2002) Conversion of xylose to ethanol by a novel phenol-tolerant strain of Enterobacteriaceae isolated from olive mill wastewater. Biotechnol Lett 24:1101–1105

    Article  Google Scholar 

  26. Isarankura-na-ayudhya C, Tantimongcolwat T (2007) Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J 6:167–176

    Google Scholar 

  27. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  28. Aswathy US, Sukumaran RK, Devi GL, Rajasree KP, Singhania RR, Pandey A (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresour Technol 101:925–930

    Article  CAS  PubMed  Google Scholar 

  29. Kang KE, Chung D-P, Kim Y, Chung BW, Choi GW (2015) High-titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 145:18–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1A09918683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunwoo, I., Kwon, J.E., Nguyen, T.H. et al. Ethanol production from water hyacinth (Eichhornia crassipes) hydrolysate by hyper-thermal acid hydrolysis, enzymatic saccharification and yeasts adapted to high concentration of xylose. Bioprocess Biosyst Eng 42, 1367–1374 (2019). https://doi.org/10.1007/s00449-019-02136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02136-3

Keywords

Navigation