Skip to main content

Advertisement

Log in

Phospholipase D engineering for improving the biocatalytic synthesis of phosphatidylserine

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Phosphatidylserine is widely used in food, health, chemical and pharmaceutical industries. The phospholipase D-mediated green synthesis of phosphatidylserine has attracted substantial attention in recent years. In this study, the phospholipase D was heterologously expressed in Bacillus subtilis, Pichia pastoris, and Corynebacterium glutamicum, respectively. The highest activity of phospholipase D was observed in C. glutamicum, which was 0.25 U/mL higher than these in B. subtilis (0.14 U/mL) and P. pastoris (0.22 U/mL). System engineering of three potential factors, including (1) signal peptides, (2) ribosome binding site, and (3) promoters, was attempted to improve the expression level of phospholipase D in C. glutamicum. The maximum phospholipase D activity reached 1.9 U/mL, which was 7.6-fold higher than that of the initial level. The enzyme displayed favorable transphosphatidylation activity and it could efficiently catalyze the substrates l-serine and soybean lecithin for synthesis of phosphatidylserine after optimizing the conversion reactions in detail. Under the optimum conditions (trichloromethane/enzyme solution 4:2, 8 mg/mL soybean lecithin, 40 mg/mL l-serine, and 15 mM CaCl2, with shaking under 40 °C for 10 h), the reaction process showed 48.6% of conversion rate and 1.94 g/L of accumulated phosphatidylserine concentration. The results highlight the use of heterologous expression, system engineering, and process optimization strategies to adapt a promising phospholipase D for efficient phosphatidylserine production in synthetic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Suzuki S, Yamatoya H, Sakai M, Kataoka A, Furushiro M, Kudo S (2001) Oral administration of soybean lecithin transphosphatidylated phosphatidylserine improves memory impairment in aged rats. J Nutr 131:2951–2956

    Article  CAS  PubMed  Google Scholar 

  2. Ralf J, Martin P, Michael K (2007) Phospholipids and sports performance. J Int Soc Sports Nutr 4:1–8

    Article  Google Scholar 

  3. Starks MA, Starks SL, Kingsley M, Purpura M, Jäger R (2008) The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Int Soc Sports Nutr 5:5–11

    Article  CAS  Google Scholar 

  4. Zhou WB, Gong JS, Hou HJ, Li H, Lu ZM, Xu HY, Xu ZH, Shi JS (2018) Mining of a phospholipase D and its application in enzymatic preparation of phosphatidylserine. Bioengineered 9:80–89

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Li B, Wang J, Li H, Zhao B (2017) High-yield and sustainable production of phosphatidylserine in purely aqueous solutions via adsorption of phosphatidylcholine on triton-X-100-modified silica. J Agric Food Chem 65:10767–10774

    Article  CAS  PubMed  Google Scholar 

  6. Ogino C, Si Kuroda, Tokuyama S, Kondo A, Shimizu N, Tanizawa K, Fukuda H (2003) Phospholipase D from Streptoverticillium cinnamoneum: protein engineering and application for phospholipid production. J Mol Catal B Enzym 23:107–115

    Article  CAS  Google Scholar 

  7. Damnjanovic J, Nakano H, Iwasaki Y (2014) Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Biotechnol Bioeng 111:674–682

    Article  CAS  PubMed  Google Scholar 

  8. Masayama A, Tsukada K, Ikeda C, Nakano H, Iwasaki Y (2009) Isolation of phospholipase D mutants having phosphatidylinositol-synthesizing activity with positional specificity on myo-inositol. ChemBioChem 10:559–564

    Article  CAS  PubMed  Google Scholar 

  9. Interthal H, Pouliot JJ, Champoux JJ (2001) The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc Natl Acad Sci USA 98:12009–12014

    Article  CAS  PubMed  Google Scholar 

  10. Leiros I, McSweeney S, Hough E (2004) The reaction mechanism of phospholipase D from Streptomyces sp. strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J Mol Biol 339:805–820

    Article  CAS  PubMed  Google Scholar 

  11. Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE (1998) Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. Proc Natl Acad Sci USA 95:9202–9207

    Article  CAS  PubMed  Google Scholar 

  12. Zambonelli C, Morandi P, Vanoni MA, Tedeschi G, Servic S, Curti B, Carrea G, Di Lorenzo R, Monti D (2003) Cloning and expression in Escherichia coli of the gene encoding Streptomyces PMF PLD, a phospholipase D with high transphosphatidylation activity. Enzyme Microb Technol 33:676–688

    Article  CAS  Google Scholar 

  13. Zhang YN (2008) Cloning of the phosphatidylserine synthase gene and its secretive expression in Bacillus subtilis. China Biotechnol 28:56–60

    Google Scholar 

  14. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98:5301–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu YH, Jia-Xin BO, Qiao J, Zhang C, Wang JL, Lu FP (2012) High density fermentation optimization of phospholipase D displayed on Pichia pastoris cell surface. Food Res Dev 33:184–187

    Article  Google Scholar 

  16. Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J (2013) How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 4:212–223

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  18. Low KO, Muhammad Mahadi N, Md Illias R (2013) Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 97:3811–3826

    Article  CAS  PubMed  Google Scholar 

  19. Song Y, Fu G, Dong H, Li J, Du Y, Zhang D (2017) High-efficiency secretion of beta-Mannanase in Bacillus subtilis through protein synthesis and secretion optimization. J Agric Food Chem 65:2540–2548

    Article  CAS  PubMed  Google Scholar 

  20. Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ (2016) Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol Bioeng 113:163–172

    Article  CAS  PubMed  Google Scholar 

  21. Chen MX, Xin-Rui LU, Yu MA, Sun MB, Luo WJ, Wang PQ, Zhang MY, Zhang YX, Sciamp SL (2014) Improvement of phosphatidyl serine synthetase activity by means of gene engineering. J Microbiol 34:44–48

    Google Scholar 

  22. Kovatchev S, Eibl H (1978) The preparation of phospholipids by phospholipase D. Adv Exp Med Biol 101:221–226

    Article  CAS  PubMed  Google Scholar 

  23. Iwasaki Y, Mizumoto Y, Okada T, Yamamoto T, Tsutsumi K, Yamane T (2003) An aqueous suspension system for phospholipase D-mediated synthesis of PS without toxic organic solvent. J Am Oil Chem Soc 80:653–657

    Article  CAS  Google Scholar 

  24. Chen S, Xu L, Li Y, Hao N, Yan M (2013) Bioconversion of phosphatidylserine by phospholipase D from Streptomyces racemochromogenes in a microaqueous water-immiscible organic solvent. Biosci Biotechnol Biochem 77:1939–1941

    Article  CAS  PubMed  Google Scholar 

  25. Dong X, Yue Z, Zhao J, Wang X (2016) Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l -isoleucine biosynthesis. J Ind Microbiol Biotechnol 43:873–885

    Article  CAS  PubMed  Google Scholar 

  26. Heider SA, Wendisch VF (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10:1170–1184

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Yang Y, Zhang W, Sun Y, Peng F, Jeffrey L, Harvey L, McNeil B, Bai Z (2016) Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications. Crit Rev Biotechnol 36:652–664

    CAS  PubMed  Google Scholar 

  28. Freudl R (2017) Beyond amino acids: use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol 258:101–109

    Article  CAS  PubMed  Google Scholar 

  29. Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS, Petzold CJ, Keasling JD (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol 98:1567–1581

    Article  CAS  PubMed  Google Scholar 

  30. Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ (2015) Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Fact 14:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yim SS, An SJ, Kang M, Lee J, Jeong KJ (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 110:2959–2969

    Article  CAS  PubMed  Google Scholar 

  32. Okibe N, Suzuki N, Inui M, Yukawa H (2010) Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett Appl Microbiol 50:173–180

    Article  CAS  PubMed  Google Scholar 

  33. Ozturk S, Ergun BG, Calik P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101:7459–7475

    Article  CAS  PubMed  Google Scholar 

  34. Roblesmedina A, Gonzálezmoreno PA, Estebancerdán L, Molinagrima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408

    Article  CAS  Google Scholar 

  35. Kanth BK, Lee J, Pack SP (2014) Carbonic anhydrase: its biocatalytic mechanisms and functional properties for efficient CO2 capture process development. Eng Life Sci 13:422–431

    Article  CAS  Google Scholar 

  36. Favrebulle O, Schouten T, Kingma J, Witholt B (1991) Bioconversion of n-octane to octanoic acid by a recombinant Escherichia coli cultured in a two-liquid phase bioreactor. Biotechnology 9:367–371

    CAS  Google Scholar 

  37. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21676121), the National first-class discipline program of Light Industry Technology and Engineering (No. LITE2018-18), the Six talent peaks project in Jiangsu Province (No. 2015-SWYY-006), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015B146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Shi.

Ethics declarations

Conflict of interest

All the authors reviewed and agreed to submit this manuscript. The authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, HJ., Gong, JS., Dong, YX. et al. Phospholipase D engineering for improving the biocatalytic synthesis of phosphatidylserine. Bioprocess Biosyst Eng 42, 1185–1194 (2019). https://doi.org/10.1007/s00449-019-02116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02116-7

Keywords