Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates

Abstract

Polyhydroxyalkanoates (PHAs) are biological plastics that are sustainable alternative to synthetic ones. Numerous microorganisms have been identified as PHAs producers. They store PHAs as cellular inclusions to use as an energy source backup. They can be produced in shake flasks and in bioreactors under defined fermentation and physiological culture conditions using suitable nutrients. Their production at bioreactor scale depends on various factors such as carbon source, nutrients supply, temperature, dissolved oxygen level, pH, and production modes. Once produced, PHAs find diverse applications in multiple fields of science and technology particularly in the medical sector. The present review covers some recent developments in sustainable bioreactor scale production of PHAs and identifies some areas in which future research in this field might be focused.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Mozejko-Ciesielska J, Kiewisz K (2016) Bacterial polyhydroxyalkanoates: still fabulous. Microbiol Res 192:271–282

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  3. 3.

    Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chem Biol 8:770–782

    CAS  Google Scholar 

  4. 4.

    Macrae R, Wilkinson J (1958) Poly-β-hyroxybutyrate metabolism in washed suspensions of bacillus cereus and bacillus megaterium. Microbiology 19:210–222

    CAS  Google Scholar 

  5. 5.

    De Smet M, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Volova TG, Zhila NO, Shishatskaya EI, Mironov PV, Vasil’ev AD, Sukovatyi AG, Sinskey AG (2013) The physicochemical properties of polyhydroxyalkanoates with different chemical structures. Poly Sci Ser A 55:427–437

    Article  CAS  Google Scholar 

  7. 7.

    Virov P (2013) Polyhydroxyalkanoates: biodegradable polymers and plastics from renewable resources. Mater Technol 47:5–12

    Google Scholar 

  8. 8.

    Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F (2017) Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. Biotechnol Biofuels 10:201–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Dietrich K, Dumont MJ, Del Rio LF, Orsat V (2017) Producing PHAs in the bioeconomy-towards a sustainable bioplastic. Sustain Prod Consum 9:58–70

    Article  Google Scholar 

  10. 10.

    Rai R, Roy I (2011) Polyhydroxyalkanoates: the emerging new green polymers of choice. In: Sharma SK, Mudhoo A (eds) A handbook of applied biopolymer technology. Royal Society of Chemistry, Cambridge, pp 79–101

    Google Scholar 

  11. 11.

    Raza ZA, Abid S, Banat IM (2018) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad 126:45–56

    Article  CAS  Google Scholar 

  12. 12.

    Tan GYA, Chen C-L, Li L, Ge L, Lin W, Mutiara I, Razaad N, Li Y, Lei Z, Mo Yu, Wang J-Y (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754

    Article  CAS  Google Scholar 

  13. 13.

    Cui YW, Shi YP, Gong XY (2017) Effects of C/N in the substrate on the simultaneous production of polyhydroxyalkanoates and extracellular polymeric substances by Haloferax mediterranei via kinetic model analysis. J R Soc Chem 7:18953–18961

    CAS  Google Scholar 

  14. 14.

    Kaur G, Roy I (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng 29:157–172

    Article  CAS  Google Scholar 

  15. 15.

    Clarinval AM, Halleux J (2005) Classification of biodegradable polymers in biodegradable polymers for industrial applications. CRIF, France

    Google Scholar 

  16. 16.

    Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Greene J (2013) PHA biodegradable blow-molded bottles: compounding and performance. Plast Eng 69:16–21

    Article  Google Scholar 

  18. 18.

    Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  20. 20.

    Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:265–330

    Article  CAS  Google Scholar 

  21. 21.

    Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M (2013) Biopolymer from industrial residues: life cycle assessment of poly(hydroxyalkanoates) from whey. Resour Conserv Recycl 73:64–71

    Article  Google Scholar 

  22. 22.

    Bohlmann GM (2006) Polyhydroxyalkanoate production in crops. J Am Chem Soc 921:253–270

    CAS  Google Scholar 

  23. 23.

    Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: properties and chemical modification approaches for their functionalization. Biotechnol Prog 34:29–41

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Kleerebezem R, Van Loosdrecht RL (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Majone M, Massanisso P, Carucci A, Lindrea K, Tandoi V (1996) Influence of storage on kinetic selection to control aerobic filamentous bulking. Water Sci Technol 34:223–232

    Article  CAS  Google Scholar 

  26. 26.

    Martinez GA, Rebecchi S, Decorti D, Domingos JMB, Rio DD, Bertin L, Porto CD, Fava F (2016) Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chem 18:261–270

    Article  Google Scholar 

  27. 27.

    Raza ZA, Abid S, Rehman A, Hussain T (2016) Synthesis kinetics of poly(3-hydroxybutyrate) by using a Pseudomonas aeruginosa mutant strain grown on hexadecane. Int Biodeterior Biodegrad 115:171–178

    Article  CAS  Google Scholar 

  28. 28.

    Lasemi Z, Darzi GN, Baei MS (2013) Media optimization for poly (β-hydroxybutyrate) production using Azotobacter beijerinckii. Int J Polym Mater Polym Biomater 62:265–269

    Article  CAS  Google Scholar 

  29. 29.

    Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430

    CAS  PubMed  Google Scholar 

  30. 30.

    Chakraborty P, Gibbons W, Muthukumarappan K (2009) Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. J Appl Microbiol 106:1996–2005

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Haas R, Jin B, Zepf FT (2008) Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Povolo S, Romanelli MG, Basaglia M, Ilieva VI, Corti A, Morelli A, Chiellini E, Casella S (2013) Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. New Biotechnol 30:629–634

    Article  CAS  Google Scholar 

  33. 33.

    Kenny ST, Kaminsky W, Wood T, Babu RP, Keely CM, Blau W, O’Connor KE (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42:7696–7701

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Davis R (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18:463–470

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (PHA) co and ter-polyesters from biodiesel industry-derived by-products. Archaea 2013:1–10

    Article  CAS  Google Scholar 

  37. 37.

    Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Albuquerque M, Torres C, Reis M (2010) Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Res 44:3419–3433

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Follonier S, Riesen R, Zinn M (2015) Pilot-scale production of functionalized mcl-PHA from grape pomace supplemented with fatty acids. Chem Biochem Eng 29:113–121

    Article  CAS  Google Scholar 

  40. 40.

    Kellerhals MB, Kessler B, Witholt B, Tchouboukov A, Brandl H (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33:4690–4698

    Article  CAS  Google Scholar 

  41. 41.

    Atlic A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly (R-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91:295–304

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Durner R, Witholt B, Egli T (2000) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Appl Environ Microbiol 66:3408–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Heinrich D, Raberg M, Fricke P, Kenny ST, Morales-Gamez L, Babu RP, O’Connor KE, Steinbuchel A (2016) Synthesis gas (Syngas)-derived medium-chain-length polyhydroxyalkanoate synthesis in engineered Rhodospirillum rubrum. Appl Environ Microbiol 82:6132–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Pagliano G, Ventorino V, Panico A, Pepe O (2017) Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels 10:113–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ienczak JL, Schmidell W, De Aragao GMAF (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40:275–286

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Israni N, Shivakumar S (2015) Evaluation of upstream process parameters influencing the growth associated PHA accumulation in Bacillus sp. J Sci Ind Res 74:290–295

    Google Scholar 

  47. 47.

    Masood F, Abdul-Salam M, Yasin T, Hameed A (2017) Effect of glucose and olive oil as potential carbon sources on production of PHAs copolymer and tercopolymer by Bacillus cereus FA11. 3 Biotech 7:87–101

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gaillard JL, Corroler D (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116:302–308

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Park SJ, Jang YA, Noh W, Oh YH, Lee H, David Y, Baylon MG, Shin J, Yang JE, Choi SY, Lee SH, Lee SY (2015) Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnol Bioeng 112:638–643

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Eggink G, Steinbuchel A, Poirier A, Witholt B (1997) International symposium on bacterial polyhydroxyalkanoates. NRC Research Press, Toulouse

    Google Scholar 

  51. 51.

    Byrom D (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiol Lett 103:247–250

    CAS  Google Scholar 

  52. 52.

    Pandian SR, Deepak V, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresour Technol 101:705–711

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18:25–30

    Article  CAS  Google Scholar 

  54. 54.

    Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K (2013) Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97:1407–1424

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Muhr A (2013) Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym 73:1391–1398

    Article  CAS  Google Scholar 

  56. 56.

    Akiyama M, Taima Y, Doi Y (1992) Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Appl Microbiol Biotechnol 37:698–701

    Article  CAS  Google Scholar 

  57. 57.

    Shay EG (1993) Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenerg 4:227–242

    Article  CAS  Google Scholar 

  58. 58.

    Rincon J, Camarillo R, Rodriguez L, Ancillo V (2010) Fractionation of used frying oil by supercritical CO2 and cosolvents. Ind Eng Chem Res 49:2410–2418

    Article  CAS  Google Scholar 

  59. 59.

    Jiang G (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157

    Article  CAS  PubMed Central  Google Scholar 

  60. 60.

    Gumel A, Annuar M, Heidelberg T (2014) Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001. Braz J Microbiol 45:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Kumar M, Singhal A, Verma PK, Thakur IS (2017) Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. J Am Chem Soc 2:9156–9163

    CAS  Google Scholar 

  62. 62.

    Hao J, Wang X, Wang H (2017) Overall process of using a valerate-dominant sludge hydrolysate to produce high-quality polyhydroxyalkanoates (PHA) in a mixed culture. J Nat 7:6939–6943

    Google Scholar 

  63. 63.

    Yu J, Si Y (2001) A dynamic study and modeling of the formation of polyhydroxyalkanoates combined with treatment of high strength wastewater. Environ Sci Technol 35:3584–3588

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Begun G, Palko A, Brown L (1956) The ammonia-ammonium carbonate system for the concentration of nitrogen-15. J Phy Chem 60:48–51

    Article  CAS  Google Scholar 

  65. 65.

    Hu D (2011) Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P-3-HB-b-P-4-HB. Biomacromolecule 12:3166–3173

    Article  CAS  Google Scholar 

  66. 66.

    Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Ivanov V, Stabnikov V, Ahmed Z, Dobrenko S, Saliuk A (2015) Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int J Biotechnol Technol 12:725–738

    CAS  Google Scholar 

  68. 68.

    Sreekanth M, Vijayendra S, Joshi G, Shamala T (2013) Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR 67. J Food Sci Technol 50:404–408

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Zhao D (2013) Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Appl Microbiol Biotechnol 97:3027–3036

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Xu Z, Dai X, Chai X (2018) Effect of influent pH on biological denitrification using biodegradable PHBV/PLA blends as electron donor. Biochem Eng J 131:24–30

    Article  CAS  Google Scholar 

  71. 71.

    Liu C, Luo G, Wang W, He Y, Zhang R, Liu G (2018) The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation. Fuel 224:537–544

    Article  CAS  Google Scholar 

  72. 72.

    Poblete-Castr I, Escapa IE, Jager C, Puchalka J, Lam JMC, Schomburg D, Prieto MP, Dos Santos VAP (2012) The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single-and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb Cell Fact 11:1–21

    Article  CAS  Google Scholar 

  73. 73.

    Kang M, Peng S, Tian Y, Zhang H (2018) Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment–water interface in the hai river estuary, China. Mar Pollut Bull 130:132–139

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Third KA, Newland M, Cord-Ruwisch R (2003) The effect of dissolved oxygen on PHB accumulation in activated sludge cultures. Biotechnol Bioeng 82:238–250

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    De Almeida A, Giordano AM, Nikel PI, Pettinari MJ (2010) Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Appl Environ Microbiol 76:2036–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Korkakaki E, Van Loosdrecht MC, Kleerebezem R (2017) Impact of phosphate limitation on PHA production in a feast-famine process. Water Res 126:472–480

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Koller M (2015) Novel precursors for production of 3-hydroxyvalerate-containing poly[(R)-hydroxyalkanoate]s. Biocatal Biotransform 32:161–167

    Article  CAS  Google Scholar 

  78. 78.

    Koller M (2015) Liquefied wood as inexpensive precursor-feedstock for bio-mediated incorporation of (R)-3-hydroxyvalerate into polyhydroxyalkanoates. Materials 8:6543–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    De Paula FC, Kakazu S, De Paula CBC, Gomez JGC, Contiero J (2017) Polyhydroxyalkanoate production from crude glycerol by newly isolated Pandoraea sp. J King Saud Univ Sci 29:166–173

    Article  Google Scholar 

  80. 80.

    Passanha P, Kedia G, Dinsdale RM, Guwy AJ, Esteves SR (2014) The use of NaCl addition for the improvement of polyhydroxyalkanoate production by Cupriavidus necator. Bioresour Technol 163:287–294

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Ghysels S, Mozumder MSI, De Wever H, Volcke EI, Garcia-Gonzalez L (2018) Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide. Bioresour Technol 249:858–868

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Garcia-Perez T, Lopez JC, Passos F, Lebrero R, Revah S, Munoz R (2018) Simultaneous methane abatement and PHB production by methylocystis hirsuta in a novel gas-recycling bubble column bioreactor. Chem Eng J 334:691–697

    Article  CAS  Google Scholar 

  83. 83.

    Koller M (2015) Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis. Curr Biotechnol 4:464–480

    Article  CAS  Google Scholar 

  84. 84.

    Ishak K, Annuar M, Heidelberg H, Gumel A (2016) Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly(3-hydroxyalkanoates)(mcl-PHAs) in medium mixture of solvent/marginal non-solvent. Arabia J Sci Eng 41:33–44

    Article  Google Scholar 

  85. 85.

    Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly[R-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 13:549–562

    Article  CAS  Google Scholar 

  86. 86.

    Pathak VM (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4:15

    Article  Google Scholar 

  87. 87.

    Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947

    Article  CAS  PubMed  Google Scholar 

  88. 88.

    Chen GQ, Wu Q (2005) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Massieu L, Haces M, Montiel T, Hernandez-Fonseca K (2003) Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 120:365–378

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) d-β-hydroxybutyrate protects neurons in models of alzheimer’s and prkinson’s disease. Proc Natl Acad Sci 97:5440–5444

    Article  CAS  PubMed  Google Scholar 

  91. 91.

    Yao YC (2015) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830

    Article  CAS  Google Scholar 

  92. 92.

    Ahmed T, Marcal H, Lawless M, Wanandy NS, Chiu A, Foster LJR (2010) Polyhydroxybutyrate and its copolymer with polyhydroxyvalerate as biomaterials: influence on progression of stem cell cycle. Biomacromolecules 11:2707–2715

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Gadgil BST, Killi N, Rathna GV (2017) Polyhydroxyalkanoates as biomaterials. Med Chem Commun 8:1774–1787

    Article  Google Scholar 

  94. 94.

    Furutate S, Nakazaki H, Maejima K, Hiroe A, Abe H, Tsuge T (2017) Biosynthesis and characterization of novel polyhydroxyalkanoate copolymers consisting of 3-hydroxy-2-methylbutyrate and 3-hydroxyhexanoate. J Polym Res 24:221

    Article  CAS  Google Scholar 

  95. 95.

    Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Yu P, Chua H, Huang A, Lo W, Chen G (1998) Conversion of food industrial wastes into bioplastics. Appl Biochem Biotechnol 70:603–614

    Article  PubMed  Google Scholar 

  97. 97.

    Yamane T, Fukunaga M, Lee YW (1996) Increased PHB productivity by high-cell-density fed-batch culture of Alcaligenes latus, a growth-associated PHB producer. Biotechnol Bioeng 50:197–202

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Aditi S, Souza Shalet NMD, Pranesh R, Katyayini T (2015) Microbial production of polyhydroxyalkanoates (PHA) from novel sources: a review. Int J RBS 4:16–28

    Google Scholar 

  99. 99.

    Gomez J (1996) Evaluation of soil gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Appl Microbiol Biotechnol 45:785–791

    Article  CAS  Google Scholar 

  100. 100.

    Pan W, Perrotta JA, Stipanovic AJ, Nomura CT, Nakas JP (2012) Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 39:459–469

    Article  CAS  PubMed  Google Scholar 

  101. 101.

    Chee JY, Tan Y, Samian MR, Sudesh K (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ 18:584–592

    Article  CAS  Google Scholar 

  102. 102.

    Qi Q, Rehm BH (2001) Polyhydroxybutyrate biosynthesis in caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology 147:3353–3358

    Article  CAS  PubMed  Google Scholar 

  103. 103.

    Valentin HE, Lee EY, Choi CY, Steinbüchel A (1994) Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 40:710–716

    Article  CAS  Google Scholar 

  104. 104.

    Sonnleitner B, Heinzle E, Braunegg G, Lafferty R (1979) Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alcaligenes eutrophus H 16 and Mycoplana rubra R 14 with respect to the dissolved oxygen tension in ammonium-limited batch cultures. Eur J Appl Microbiol Biotechnol 7:1–10

    Article  CAS  Google Scholar 

  105. 105.

    Ishizaki A, Tanaka K (1991) Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 71:254–257

    Article  CAS  Google Scholar 

  106. 106.

    Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly (3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    Article  CAS  PubMed  Google Scholar 

  107. 107.

    Beaulieu M, Beaulieu Y, Melinard J, Pandian S, Goulet J (1995) Influence of ammonium salts and cane molasses on growth of Alcaligenes eutrophus and production of polyhydroxybutyrate. Appl Environ Microbiol 61:165–169

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Cavalheiro JM, De Almeida MCM, Grandfils C, Da Fonseca M (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515

    Article  CAS  Google Scholar 

  109. 109.

    Van-Thuoc D, Quillaguaman J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    CAS  PubMed  Google Scholar 

  110. 110.

    Koller M, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7:218–226

    Article  CAS  PubMed  Google Scholar 

  111. 111.

    Bourque D, Pomerleau Y, Groleau D (1995) High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44:367–376

    Article  CAS  Google Scholar 

  112. 112.

    Wendlandt KD, Jechorek M, Helm J, Stottmeister U (1998) Production of PHB with a high molecular mass from methane. Polym Degrad Stab 59:191–194

    Article  CAS  Google Scholar 

  113. 113.

    Smit AM, Strabala TJ, Peng L, Rawson P, Lloyd-Jones G, Jordan TW (2012) Proteomic phenotyping of novosphingobium nitrogenifigens reveals a robust capacity for simultaneous nitrogen fixation, polyhydroxyalkanoate production, and resistance to reactive oxygen species. Appl Environ Microbiol 78:4802–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Yamane T, Chen X, Ueda S (1996) Growth associated production of Poly(3-hydroxyvalerate) from n-pentanol by a Methylotrophic bacterium, Paracoccus denitrificans. Appl Environ Microbiol 62:380–384

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Tripathi AD, Yadav A, Jha A, Srivastava S (2012) Utilizing of sugar refinery waste (cane molasses) for production of bio-plastic under submerged fermentation process. J Poly Environ 20:446–453

    Article  CAS  Google Scholar 

  116. 116.

    Lee E, Jendrossek D, Schirmer A, Choi C, Steinbüchel A (1995) Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1, 3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33. Appl Microbiol Biotechnol 42:901–909

    Article  CAS  Google Scholar 

  117. 117.

    Ward PG, Goff M, Donner M, Kaminsky W, Connor KEQ (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437

    Article  CAS  PubMed  Google Scholar 

  118. 118.

    Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77

    Article  CAS  PubMed  Google Scholar 

  119. 119.

    Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O’Connor KE (2008) The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl Microbiol Biotechnol 80:665–673

    Article  CAS  PubMed  Google Scholar 

  120. 120.

    Haywood GW, Anderson AJ, Williams DR, Dawes EA, Ewing DF (1991) Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88

    Article  CAS  PubMed  Google Scholar 

  121. 121.

    Akar A (2006) Accumulation of polyhydroxyalkanoates by Microlunatus phosphovorus under various growth conditions. J Ind Microbiol Biotechnol 33:215–220

    Article  CAS  PubMed  Google Scholar 

  122. 122.

    Koller M, Atlic A, Gonzalez-Garcia Y, Kutschera C, Braunegg G (2008) Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 272:87–92

    Article  CAS  Google Scholar 

  123. 123.

    Cui B, Huang S, Xu F, Zhang R, Zhang Y (2015) Improved productivity of poly(3-hydroxybutyrate)(PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Appl Microbiol Biotechnol 99:6009–6019

    Article  CAS  PubMed  Google Scholar 

  124. 124.

    Ng KS, Wong YM, Tsuge T, Sudesh K (2011) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymers using jatropha oil as the main carbon source. Process Biochem 46:1572–1578

    Article  CAS  Google Scholar 

  125. 125.

    Sindhu R, Silviya N, Binod P, Pandey A (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72

    Article  CAS  Google Scholar 

  126. 126.

    Gomaa EZ (2014) Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz Arch Biol Technol 57:145–154

    Article  CAS  Google Scholar 

  127. 127.

    Negi S, Banerjee R (2010) Optimization of culture parameters to enhance production of amylase and protease from Aspergillus awamori in a single fermentation. Afr J Biochem Res 4:73–80

    CAS  Google Scholar 

  128. 128.

    Shamala T, Vijayendra S, Joshi G (2012) Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Braz J Microbiol 43:1094–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Rinnan R, Baath E (2009) Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Appl Environ Microbiol 75:3611–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Ryu HW, Cho KS, Goodrich PR, Park CH (2008) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: effect of supplementing glucose, yeast extract, and inorganic salts. Biotechnol Bioprocess Eng 13:651–658

    Article  CAS  Google Scholar 

  131. 131.

    Wei YH (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int J Mol Sci 12:252–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Lopez-Abelairas M, García-Torreiro M, Lu-Chau T, Lema J, Steinbuchel A (2015) Comparison of several methods for the separation of poly(3-hydroxybutyrate) from Cupriavidus necator H16 cultures. Biochem Eng J 93:250–259

    Article  CAS  Google Scholar 

  133. 133.

    Kapritchkoff FM (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462

    Article  CAS  PubMed  Google Scholar 

  134. 134.

    Kosseva M, Webb C (2013) Food industry wastes: assessment and recuperation of commodities. Academic Press, Cambridge

    Google Scholar 

  135. 135.

    Divyashree M, Shamala T (2010) Extractability of polyhydroxyalkanoate synthesized by Bacillus flexus cultivated in organic and inorganic nutrient media. India J Microbiol 50:63–69

    Article  CAS  Google Scholar 

  136. 136.

    Khosravi-Darani K (2010) Research activities on supercritical fluid science in food biotechnology. Crit Rev Food Sci Nutr 50:479–488

    Article  CAS  PubMed  Google Scholar 

  137. 137.

    Murugan P, Han L, Gan CY, Maurer FH, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support of Higher Education Commission of Pakistan for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raza, Z.A., Tariq, M.R., Majeed, M.I. et al. Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 42, 901–919 (2019). https://doi.org/10.1007/s00449-019-02093-x

Download citation

Keywords

  • Bioplastic
  • Biopolyester
  • Bioreactor
  • Fermentation
  • PHAs