Bioprocess and Biosystems Engineering

, Volume 42, Issue 5, pp 829–838 | Cite as

Production of cutinase by solid-state fermentation and its use as adjuvant in bioherbicide formulation

  • Caroline Torres de Oliveira
  • Eliana Albornoz Alves
  • Izelmar Todero
  • Raquel C. Kuhn
  • Débora de Oliveira
  • Marcio A. MazuttiEmail author
Research Paper


In the present study, it was presented a strategy to maximize the cutinase production by solid-state fermentation from different microorganisms and substrates. The best results were observed using Fusarium verticillioides, rice bran being the main substrate. Maximum yield of cutinase obtained by the strain was 16.22 U/g. For concentration, ethanol precipitation was used, and the purification factor was 2.4. The optimum temperature and pH for enzyme activity were 35 °C and 6.5, respectively. The enzyme was stable at a wide range of temperature and at all pH values tested. The concentrated cutinase was used as an adjuvant in a formulation containing cutinase + bioherbicide. The use of enzyme increased the efficiency of bioherbicide, since cutinase was responsible to remove/degrade the cutin that recovery the weed leaves and difficult the bioherbicide absorption. Cutinase showed to be a promising product to be used in formulation of bioherbicides.


Agroindustrial residues Ethanol precipitation Enzyme characterization Bioherbicide action 



The authors thank CAPES for the scholarships as well as CNPq for the financial support of this work.


  1. 1.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  2. 2.
    Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid state fermentation: a review. Process Biochem 38:881–896CrossRefGoogle Scholar
  3. 3.
    Champagne ET, Wood DF, Juliano BO, Bechtel DB (2004) The rice grain and its gross composition. Rice Chem Technol 3:77–107CrossRefGoogle Scholar
  4. 4.
    Chaudhari SA, Singhal RS (2015) Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int J Biol Macromol 79:398–404CrossRefGoogle Scholar
  5. 5.
    Chen S, Su L, Chen J, Wu J (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31:1754–1767CrossRefGoogle Scholar
  6. 6.
    Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862CrossRefGoogle Scholar
  7. 7.
    Chen Z, Franco CF, Baptista RP, Cabral JM, Coelho AV, Rodrigues CJ Jr, Melo EP (2007) Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides. Appl Microbiol Biotechnol 73:1306–1313CrossRefGoogle Scholar
  8. 8.
    Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P (2008) Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol 83:1012–1018CrossRefGoogle Scholar
  9. 9.
    Cordeiro LG, El-Aouar ÂA, Gusmão RP (2012) Caracterização do bagaço de malte oriundo de cervejarias. Revista Verde de Agroecologia e Desenvolvimento Sustentável 7:20–22Google Scholar
  10. 10.
    Cortez EV, Pessoa A (1999) Xylanase and β-xylosidase separation by fractional precipitation. Process Biochem 35:277–283CrossRefGoogle Scholar
  11. 11.
    Daniel JJ Jr, Zabot GL, Tres MV, Harakava R, Kuhn RC, Mazutti MA (2018) Fusarium fujikuroi: A novel source of metabolites with herbicidal activity. Biocatal Agric Biotechnol 14:314–320CrossRefGoogle Scholar
  12. 12.
    De Almeida TC, Klaic R, Ariotti G, Sallet D, Spannemberg SS, Foletto EL, Kuhn RC, Hoffmann R, Mazutti MA (in press) Production and formulation of a bioherbicide from Phoma sp. as environment-friendly and safer alternative for weed control. Environ Qual ManagGoogle Scholar
  13. 13.
    Degani O (2015) Production and purification of cutinase from Fusarium oxysporum using modified growth media and a specific cutinase substrate. Adv Biosci Biotechnol 6:245CrossRefGoogle Scholar
  14. 14.
    Di Luccio M, Capra F, Ribeiro NP, Vargas GD, Freire DM, De Oliveira D (2003) Effect of temperature, moisture, and carbon supplementation on lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO (pp. 173–180). Humana Press, Totowa, NJGoogle Scholar
  15. 15.
    Dutta K, Sen S, Veeranki VD (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44:127–134CrossRefGoogle Scholar
  16. 16.
    Fraga LP, Carvalho PO, Macedo GA (2012) Production of cutinase by Fusarium oxysporum on Brazilian agricultural by-products and its enantioselective properties. Food Bioprocess Technol 5:138–146CrossRefGoogle Scholar
  17. 17.
    Fett WF, Wijey C, Moreau RA, Osman SF (2000) Production of cutinolytic esterase by filamentous bacteria. Lett Appl Microbiol 31:25–29CrossRefGoogle Scholar
  18. 18.
    Formenti LR, Nørregaard A, Bolic A, Hernandez DQ, Hagemann T, Heins AL, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey KV (2014) Challenges in industrial fermentation technology research. Biotechnol J 9:727–738CrossRefGoogle Scholar
  19. 19.
    Golunski S, Silva MF, Marques CT, Rosseto V, Kaizer RR, Mossi A, Rigo D, Dallago R, Di Luccio M, Treichel H (2017) Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. Anais da Academia Brasileira de Ciências 89:57–63CrossRefGoogle Scholar
  20. 20.
    Golunski S, Astolfi V, Carniel N, De Oliveira D, Di Luccio D, Mazutti MA, Treichel H (2011) Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol 78:261–265CrossRefGoogle Scholar
  21. 21.
    Gonçalves APV, Lopes JM, Lemos F, Ribeiro FR, Prazeres DMF, Cabral JMS, Aires-Barros MR (1996) Zeolites as supports for enzymatic hydrolysis reactions. Comparative study of several zeolites. J Mol Catal B 1:53–60CrossRefGoogle Scholar
  22. 22.
    Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186CrossRefGoogle Scholar
  23. 23.
    Jallouli R, Khrouf F, Fendri A, Mechichi T, Gargouri Y, Bezzine S (2012) Purification and biochemical characterization of a novel alkaline (Phospho) lipase from a newly isolated Fusarium solani strain. Appl Biochem Biotechnol 168:2330–2343CrossRefGoogle Scholar
  24. 24.
    Kolattukudy P, Poulose AJ (1996) Cutinase cleaning composition. U.S. Patent No. 5,512,203Google Scholar
  25. 25.
    Kumari V, Kumar V, Chauhan R, Asif M, Bhalla TC (2016) Optimization of medium parameters by response surface methodology (RSM) for enhanced production of cutinase from Aspergillus sp. RL2Ct. 3 Biotech 6:149CrossRefGoogle Scholar
  26. 26.
    Kumari V, Kumar S, Kaur I, Bhalla TC (2017) Graft copolymerization of acrylamide on chitosan-co-chitin and its application for immobilization of Aspergillus sp. RL2Ct cutinase. Bioorg Chem 70:34–43CrossRefGoogle Scholar
  27. 27.
    Lima PRF, Machado-Neto JG (2001) Otimização da aplicação de fluazifop-p-butil em pós-emergência na cultura de soja (Glycine max). Planta Daninha 19:85–95CrossRefGoogle Scholar
  28. 28.
    Liu BL, Tzeng YM (1999) Water content and water activity for the production of cyclodepsipeptide in solid state fermentation. Biotech Lett 21:657–661CrossRefGoogle Scholar
  29. 29.
    Nyyssölä A, Pihlajaniemi V, Järvinen R, Mikander S, Kontkanen H, Kruus K, Kallio H, Buchert J (2013) Screening of microbes for novel acidic cutinases and cloning and expression of an acidic cutinase from Aspergillus niger CBS 513.88. Enzyme Microb Technol 52:272–278CrossRefGoogle Scholar
  30. 30.
    Pandey A, Ashakumary L, Selvakumar P, Vijayalakshmi KS (1994) Influence of water activity on growth and activity of Aspergillus niger for glycoamylase production in solid-state fermentation. World J Microbiol Biotechnol 10:485–486CrossRefGoogle Scholar
  31. 31.
    Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169CrossRefGoogle Scholar
  32. 32.
    Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Biores Technol 74:69–80CrossRefGoogle Scholar
  33. 33.
    Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84CrossRefGoogle Scholar
  34. 34.
    Pio TF, Macedo GA (2008) Cutinase production by Fusarium oxysporum in liquid medium using central composite design. J Ind Microbiol Biotechnol 35:59–67CrossRefGoogle Scholar
  35. 35.
    Pio TF, Macedo GA (2007) Optimizing the production of cutinase by Fusarium oxysporum using response surface methodology. Enzyme Microb Technol 41:613–619CrossRefGoogle Scholar
  36. 36.
    Rodriguez JA, Mateos JC, Nungaray J, González V, Bhagnagar T, Roussos S, Cordova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269CrossRefGoogle Scholar
  37. 37.
    Smail T, Salhi O, Knapp JS (1995) Solid state fermentation of carob pods by Aspergillus niger for protein production-effect of particle size. World J Microbiol Biotechnol 11:171–173CrossRefGoogle Scholar
  38. 38.
    Soccol CR, Vandenberghe LP (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13:205–218CrossRefGoogle Scholar
  39. 39.
    Speranza P, Carvalho PO, Macedo GA (2011) Effects of different solid state fermentation substrate on biochemical properties of cutinase from Fusarium sp. J Mol Catal B 72:181–186CrossRefGoogle Scholar
  40. 40.
    Speranza P, Macedo GA (2013) Biochemical characterization of highly organic solvent-tolerant cutinase from Fusarium oxysporum. Biocatal Agric Biotechnol 2:372–376CrossRefGoogle Scholar
  41. 41.
    Viniegra-González G, Favela-Torres E, Aguilar CN, De Jesus Rómero-Gomez S, Dıaz-Godınez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167CrossRefGoogle Scholar
  42. 42.
    Yang S, Liu M, Long L, Zhang R, Ding S (2018) Characterization of a cutinase from Myceliophthora thermophila and its application in polyester hydrolysis and deinking process. Process Biochem 66:106–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Caroline Torres de Oliveira
    • 1
  • Eliana Albornoz Alves
    • 1
  • Izelmar Todero
    • 1
  • Raquel C. Kuhn
    • 1
  • Débora de Oliveira
    • 2
  • Marcio A. Mazutti
    • 2
    Email author
  1. 1.Department of Chemical EngineeringFederal University of Santa Maria, UFSMSanta MariaBrazil
  2. 2.Department of Chemical and Food Engineering, Technology CenterFederal University of Santa Catarina, UFSCFlorianópolisBrazil

Personalised recommendations